

Hangzhou Hikrobot Technology Co.,Ltd.

# ID5000X Series Industrial Code Reader

## User Manual

**HIKROBOT**

# Legal Information

© Hangzhou Hikrobot Co., Ltd. All rights reserved.

## About this Document

This Document includes instructions for using and managing the Product. Pictures, charts, images and all other information hereinafter are for description and explanation only. The information contained in the Document is subject to change, without notice, due to firmware updates or other reasons. Please find the latest version in the company website (<https://en.hikrobotics.com/>). Unless otherwise agreed, Hangzhou Hikrobot Co., Ltd. or its affiliates (hereinafter referred to as "Hikrobot") makes no warranties, express or implied. Please use the Document with the guidance and assistance of professionals trained in supporting the Product.

## Acknowledgment of Intellectual Property Rights

- Hikrobot owns the copyrights and/or patents related to the technology embodied in the Products described in this Document, which may include licenses obtained from third parties. Any part of the Document, including text, pictures, graphics, etc., belongs to Hikrobot. No part of this Document may be excerpted, copied, translated, or modified in whole or in part by any means without written permission.
- **HIKROBOT** and other Hikrobot's trademarks and logos are the properties of Hikrobot in various jurisdictions. Other trademarks and logos mentioned are the properties of their respective owners.

## LEGAL DISCLAIMER

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, THIS MANUAL AND THE PRODUCT DESCRIBED, WITH ITS HARDWARE, SOFTWARE AND FIRMWARE, ARE PROVIDED "AS IS" AND "WITH ALL FAULTS AND ERRORS". HIKROBOT MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY, SATISFACTORY QUALITY, OR FITNESS FOR A PARTICULAR PURPOSE. THE USE OF THE PRODUCT BY YOU IS AT YOUR OWN RISK. IN NO EVENT WILL HIKROBOT BE LIABLE TO YOU FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, OR INDIRECT DAMAGES, INCLUDING, AMONG OTHERS, DAMAGES FOR LOSS OF BUSINESS PROFITS, BUSINESS INTERRUPTION, OR LOSS OF DATA, CORRUPTION OF SYSTEMS, OR LOSS OF DOCUMENTATION, WHETHER BASED ON BREACH OF CONTRACT, TORT (INCLUDING NEGLIGENCE), PRODUCT LIABILITY, OR OTHERWISE, IN CONNECTION WITH THE USE OF THE PRODUCT, EVEN IF HIKROBOT HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR LOSS.

YOU ACKNOWLEDGE THAT THE NATURE OF INTERNET PROVIDES FOR INHERENT SECURITY RISKS, AND HIKROBOT SHALL NOT TAKE ANY RESPONSIBILITIES FOR ABNORMAL OPERATION, PRIVACY LEAKAGE OR OTHER DAMAGES RESULTING FROM CYBER-ATTACK, HACKER ATTACK, VIRUS INFECTION, OR OTHER INTERNET SECURITY RISKS; HOWEVER, HIKROBOT WILL PROVIDE TIMELY TECHNICAL SUPPORT IF REQUIRED.

YOU AGREE TO USE THIS PRODUCT IN COMPLIANCE WITH ALL APPLICABLE LAWS, AND

YOU ARE SOLELY RESPONSIBLE FOR ENSURING THAT YOUR USE CONFORMS TO THE APPLICABLE LAW. ESPECIALLY, YOU ARE RESPONSIBLE, FOR USING THIS PRODUCT IN A MANNER THAT DOES NOT INFRINGE ON THE RIGHTS OF THIRD PARTIES, INCLUDING WITHOUT LIMITATION, RIGHTS OF PUBLICITY, INTELLECTUAL PROPERTY RIGHTS, OR DATA PROTECTION AND OTHER PRIVACY RIGHTS. YOU SHALL NOT USE THIS PRODUCT FOR ANY PROHIBITED END-USAGES, INCLUDING THE DEVELOPMENT OR PRODUCTION OF WEAPONS OF MASS DESTRUCTION, THE DEVELOPMENT OR PRODUCTION OF CHEMICAL OR BIOLOGICAL WEAPONS, ANY ACTIVITIES IN THE CONTEXT RELATED TO ANY NUCLEAR EXPLOSIVE OR UNSAFE NUCLEAR FUEL-CYCLE, OR IN SUPPORT OF HUMAN RIGHTS ABUSES.

THE PERFORMANCE DATA IN THIS PUBLICATION IS BASED ON HIKROBOT'S INTERNAL RESEARCH/EVALUATION. ACTUAL DATA MAY VARY DEPENDING ON SPECIFIC CONFIGURATIONS AND OPERATING CONDITIONS AND HIKROBOT SHALL NOT BEAR THE CONSEQUENCES ARISING THEREFROM.

IN THE EVENT OF ANY CONFLICTS BETWEEN THIS MANUAL AND THE APPLICABLE LAW, THE LATTER PREVAILS.

## Regulatory Information

---



These clauses apply only to the products bearing the corresponding mark or information.

---

### EU Conformity Statement



This product and - if applicable - the supplied accessories too are marked with "CE" and comply therefore with the applicable harmonized European standards listed under the Directive 2014/30/EU(EMCD), Directive 2001/95/EC(GPSD) and Directive 2011/65/EU(RoHS).



2012/19/EU (WEEE directive): Products marked with this symbol cannot be disposed of as unsorted municipal waste in the European Union. For proper recycling, return this product to your local supplier upon the purchase of equivalent new equipment, or dispose of it at designated collection points. For more information see: <http://www.recyclethis.info>



Regulation (EU) 2023/1542(Battery Regulation): This product contains a battery and it is in conformity with the Regulation (EU) 2023/1542. The battery cannot be disposed of as unsorted municipal waste in the European Union. See the product documentation for specific battery information. The battery is marked with this symbol, which may include lettering to indicate cadmium (Cd), or lead (Pb). For proper recycling, return the battery to your supplier or to a designated collection point. For more information see: [www.recyclethis.info](http://www.recyclethis.info).

## KC Mark Certification

Class A: The device is advised to note that as a seller or a business user (Class A) Devices and intended for use outside the Home area.

A급 기기: 이 기기는 업무용(A급) 전자파적합기기로써 판매자 또는 사용자는 이 점을 주의하시기바라며, 가정 외의 지역에서 사용하는 것을 목적으로 합니다.

## Symbol Conventions

The symbols that may be found in this document are defined as follows.

| Symbol                                                                                           | Description                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  <b>Danger</b>  | Indicates a hazard with a high level of risk, which if not avoided, will result in death or serious injury.                                                     |
|  <b>Caution</b> | Indicates a potentially hazardous situation which, if not avoided, could result in equipment damage, data loss, performance degradation, or unexpected results. |
|  <b>Note</b>    | Provides additional information to emphasize or supplement important points of the main text.                                                                   |

## Available Model

This manual is applicable to the ID5000X series industrial code reader.

## Contact Information

Hangzhou Hikrobot Co., Ltd.

E-mail: [global.support@hikrobotics.com](mailto:global.support@hikrobotics.com)

Website: <https://en.hikrobotics.com/>

# Contents

|                                                               |           |
|---------------------------------------------------------------|-----------|
| <b>Chapter 1 Safety Instruction</b> .....                     | <b>1</b>  |
| 1.1 Safety Claim .....                                        | 1         |
| 1.2 Safety Instruction .....                                  | 1         |
| 1.3 Electromagnetic Interference Prevention.....              | 2         |
| 1.4 Light Source Prevention.....                              | 3         |
| <b>Chapter 2 Overview</b> .....                               | <b>4</b>  |
| 2.1 Introduction .....                                        | 4         |
| 2.2 Key Feature.....                                          | 4         |
| <b>Chapter 3 Appearance</b> .....                             | <b>5</b>  |
| <b>Chapter 4 Connector and Indicator</b> .....                | <b>7</b>  |
| 4.1 12-Pin M12 Connector.....                                 | 7         |
| 4.2 Indicator.....                                            | 8         |
| <b>Chapter 5 Installation</b> .....                           | <b>9</b>  |
| 5.1 Installation Preparation.....                             | 9         |
| 5.2 Install Device .....                                      | 10        |
| 5.3 Wire Device .....                                         | 11        |
| <b>Chapter 6 Quick Start Guide</b> .....                      | <b>13</b> |
| 6.1 Configure via Screen .....                                | 13        |
| 6.2 Configure via Client Software.....                        | 14        |
| 6.2.1 Install Client Software .....                           | 14        |
| 6.2.2 Set PC Environment.....                                 | 14        |
| 6.2.3 Set Device Network and Connect to Client Software ..... | 15        |
| <b>Chapter 7 Basic Operation</b> .....                        | <b>17</b> |
| 7.1 Client Software Layout .....                              | 17        |
| 7.2 Basic Operation .....                                     | 18        |
| <b>Chapter 8 Screen Settings</b> .....                        | <b>21</b> |
| 8.1 Screen Introduction .....                                 | 21        |
| 8.2 Function Introduction .....                               | 22        |
| 8.2.1 View Data.....                                          | 22        |

|                                                 |           |
|-------------------------------------------------|-----------|
| <b>8.2.2 Smart Tune .....</b>                   | 22        |
| <b>8.2.3 Trigger .....</b>                      | 23        |
| <b>8.2.4 Parameter Settings .....</b>           | 24        |
| <b>8.2.5 System Information .....</b>           | 24        |
| <b>Chapter 9 Client Software Settings .....</b> | <b>25</b> |
| <b>9.1 Feature Tree Introduction .....</b>      | 25        |
| <b>9.2 Image Quality Settings .....</b>         | 27        |
| <b>9.2.1 Set Image .....</b>                    | 27        |
| <b>9.2.2 Set Exposure .....</b>                 | 28        |
| <b>9.2.3 Set Gain .....</b>                     | 29        |
| <b>9.2.4 Set Polling .....</b>                  | 30        |
| <b>9.2.5 Set Light Source .....</b>             | 33        |
| <b>9.2.6 Set Smart Tune .....</b>               | 34        |
| <b>9.2.7 Set Auto Focus .....</b>               | 35        |
| <b>9.2.8 Set Fast Focus .....</b>               | 38        |
| <b>9.2.9 Set Self-Adaptive Adjustment .....</b> | 39        |
| <b>9.2.10 Set Mirror X and Mirror Y .....</b>   | 40        |
| <b>9.2.11 Set Test Pattern .....</b>            | 41        |
| <b>9.3 Code Algorithm Settings .....</b>        | 41        |
| <b>9.3.1 Add Code .....</b>                     | 42        |
| <b>9.3.2 Set Code Reading ROI .....</b>         | 42        |
| <b>9.3.3 Set Algorithm Parameter .....</b>      | 45        |
| <b>9.3.4 Set Code Quality Evaluation .....</b>  | 47        |
| <b>9.3.5 Set Code Score .....</b>               | 50        |
| <b>9.4 Signal Input Settings .....</b>          | 51        |
| <b>9.4.1 Set Trigger Mode .....</b>             | 52        |
| <b>9.4.2 Enable Internal Trigger Mode .....</b> | 52        |
| <b>9.4.3 Enable External Trigger Mode .....</b> | 52        |
| <b>9.4.4 Stop Trigger .....</b>                 | 60        |
| <b>9.5 Signal Output Settings .....</b>         | 64        |
| <b>9.5.1 Select Output Signal .....</b>         | 64        |
| <b>9.5.2 Set Event Source .....</b>             | 65        |

---

|                                                                                        |    |
|----------------------------------------------------------------------------------------|----|
| <b>9.5.3 Enable Line Inverter</b> .....                                                | 71 |
| <b>9.6 Communication Settings</b> .....                                                | 71 |
| <b>9.6.1 Set SmartSDK</b> .....                                                        | 72 |
| <b>9.6.2 Set TCP Client</b> .....                                                      | 72 |
| <b>9.6.3 Set Serial</b> .....                                                          | 72 |
| <b>9.6.4 Set FTP</b> .....                                                             | 73 |
| <b>9.6.5 Set TCP Server</b> .....                                                      | 73 |
| <b>9.6.6 Set Profinet</b> .....                                                        | 74 |
| <b>9.6.7 Set MELSEC</b> .....                                                          | 74 |
| <b>9.6.8 Set Ethernet/IP</b> .....                                                     | 75 |
| <b>9.6.9 Set ModBus</b> .....                                                          | 76 |
| <b>9.6.10 UDP</b> .....                                                                | 76 |
| <b>9.6.11 Fins</b> .....                                                               | 77 |
| <b>9.7 Data Processing Settings</b> .....                                              | 77 |
| <b>9.7.1 Set Filter Rule</b> .....                                                     | 78 |
| <b>9.7.2 Data Processing Settings</b> .....                                            | 82 |
| <b>9.8 Contrast Control Settings</b> .....                                             | 85 |
| <b>9.9 Statistics Information</b> .....                                                | 87 |
| <b>9.10 Diagnose Event Report</b> .....                                                | 89 |
| <b>Chapter 10 Device Maintenance</b> .....                                             | 90 |
| <b>10.1 Update Firmware</b> .....                                                      | 90 |
| <b>10.2 Reboot Device</b> .....                                                        | 90 |
| <b>Chapter 11 I/O Electrical Feature and Wiring</b> .....                              | 92 |
| <b>11.1 Input Signal</b> .....                                                         | 92 |
| <b>11.2 Output Signal</b> .....                                                        | 93 |
| <b>11.3 Input Signal Wiring</b> .....                                                  | 94 |
| <b>11.4 Output Signal Wiring</b> .....                                                 | 95 |
| <b>11.5 RS-232 Serial Port</b> .....                                                   | 97 |
| <b>Chapter 12 FAQ (Frequently Asked Question)</b> .....                                | 98 |
| <b>12.1 Why the image is very dark?</b> .....                                          | 98 |
| <b>12.2 Why the client enumerates a device, but fails to connect it?</b> .....         | 98 |
| <b>12.3 Why there is no device listed after I run the IDMVS client software?</b> ..... | 98 |

---

|                                                                                                                             |            |
|-----------------------------------------------------------------------------------------------------------------------------|------------|
| <b>12.4 Why there is no image in the live view? .....</b>                                                                   | <b>99</b>  |
| <b>12.5 Why codes within the field of view cannot be recognized?.....</b>                                                   | <b>99</b>  |
| <b>12.6 Why the image quality is very poor during the live view?.....</b>                                                   | <b>100</b> |
| <b>12.7 Why the recognized codes are incomplete? .....</b>                                                                  | <b>100</b> |
| <b>12.8 Why can only the SmartSDK be selected as the communication protocol in<br/>Communication Settings section?.....</b> | <b>100</b> |
| <b>Chapter 13 Revision History .....</b>                                                                                    | <b>102</b> |

# Chapter 1 Safety Instruction

The safety instructions are intended to ensure that the user can use the device correctly to avoid danger or property loss. Read and follow these safety instructions before installing, operating and maintaining the device.

## 1.1 Safety Claim

- To ensure personal and device safety, when installing, operating, and maintaining the device, follow the signs on the device and all safety instructions described in the manual.
- The note, caution and danger items in the manual do not represent all the safety instructions that should be observed, but only serve as a supplement to all the safety instructions.
- The device should be used in an environment that meets the design specifications, otherwise it may cause malfunctions, and malfunctions or component damage caused by non-compliance with relevant regulations are not within the scope of the device's quality assurance.
- Our company will not bear any legal responsibility for personal safety accidents and property losses caused by abnormal operation of the device.

## 1.2 Safety Instruction

### Caution

- In the use of the device, you must be in strict compliance with the electrical safety regulations of the nation and region.
- It is forbidden to install the indoor device in an environment where it may be exposed to water or other liquids. If the device is damp, it may cause fire and electric shock hazard.
- If the device emits smoke, odor or noise, please turn off the power and unplug the power cord immediately, and contact the dealer or service center in time.
- Use the power adapter provided by the official manufacturer. The power adapter must meet the Limited Power Source (LPS) requirements. For specific requirements, please refer to the device's technical specifications.
- Make sure the plug is properly connected to the power socket.
- It is strictly forbidden to wire, maintain, and disassemble the device is powered on. Otherwise, there is a danger of electric shock.
- Avoid aiming the lens at strong light such as lighting, sunlight, or laser beams, etc., otherwise the image sensor will be damaged.
- It is forbidden to touch the image sensor directly. If necessary, please moisten a soft clean cloth with alcohol and gently wipe off the dust. When the device is not in use, please add a dust cover to protect the image sensor.
- If the device does not work properly, please contact your dealer or the nearest service

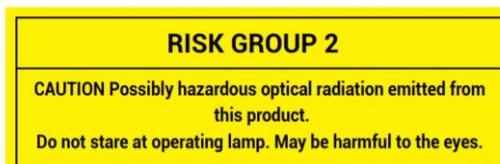
center. Never attempt to disassemble the device yourself. We shall not assume any responsibility for problems caused by unauthorized repair or maintenance.

- Please dispose of the device in strict accordance with the relevant national or regional regulations and standards to avoid environmental pollution and property damage.

## **Note**

- Check whether the device's package is in good condition, whether there is damage, intrusion, moisture, deformation, etc. before unpacking.
- Store and transport the device according to the storage and transport conditions of the device, and the storage temperature and humidity should meet the requirements.
- Do not use the product in extremely heat, extremely cold, dusty environment, corrosive environment or high humidity environment.
- The device should not be placed with exposed flame sources, such as lighted candles.
- Please read the manual and safety instructions carefully before installing the device.
- Quality requirements for installation and maintenance personnel:
  - Qualification certificate or working experience in weak current system installation and maintenance, and relevant working experience and qualifications. Besides, the personnel must possess the following knowledge and operation skills.
  - The basic knowledge and operation skills of low voltage wiring and low voltage electronic circuit connection.
  - The ability to comprehend the contents of this manual.

## 1.3 Electromagnetic Interference Prevention


- Make sure that the shielding layer of cables is intact and 360° connected to the metal connector when using shielded cables.
- Do not route the device together with other equipment (especially servo motors, high-power devices, etc.), and control the distance between cables to more than 10 cm. Make sure to shield the cables if unavoidable.
- The control cable of the device and the power cable of the industrial light source must be wired separately to avoid bundled wiring.
- The power cable, data cable, signal cable, etc. of the device must be wired separately. Make sure to ground them if the wiring groove is used to separate the wiring and the wiring groove is metal.
- During the wiring process, evaluate the wiring space reasonably, and do not pull the cables hard, so as not to damage the electrical performance of the cables.
- If the device is powered on and off frequently, it is necessary to strengthen the voltage isolation, and consider adding a DC/DC isolation power supply module between the device and the adapter.
- Use the power adapter to supply power to the device separately. If centralized power supply is necessary, make sure to use a DC filter to filter the power supply of the device separately before use.
- The unused cables of the device must be insulated.
- When installing the device, if you cannot ensure that the device itself and all equipment connected to the device are well grounded, you should isolate the device with an

insulating bracket.

- To avoid the accumulation of static electricity, ensure that other equipment (such as machines, internal components, etc.) and metal brackets on site are properly grounded.
- During the installation and use of the device, high voltage leakage must be avoided.
- Use a figure-eight bundle method if the device cable is too long.
- When connecting the device and metal accessories, they must be connected firmly to maintain good conductivity.
- Use a shielded network cable to connect to the device. If you use a self-made network cable, make sure that the shielding shell at the aviation head is well connected to the aluminum foil or metal braid of the shielding cable.

## 1.4 Light Source Prevention

- This device has a retinal blue light hazard that belongs to the class II hazard. Do not observe the light source during the operation.
  - The safety distance of the light source is 1 m.
  - Protective measures like wearing safety goggles are required when installing, maintaining and debugging the device.



**Figure 1-1 Blue Light Hazard**

- In the absence of proper protection, you should keep safety distance with the light source, or avoid direct eye exposure with the light source during device installation and maintenance.

## Chapter 2 Overview

### 2.1 Introduction

The ID5000X series industrial code reader can read different types of codes. It adopts deep learning algorithm to process images with good robustness, and can recognize various complex codes. The device has a built-in screen to view the statistical data and adjust parameters without accessing to the client. It also supports board selection of accessories, such as multi-color light source or wafer light source, for improving code-reading ability and scene adaptability.

### 2.2 Key Feature

- Adopts built-in deep learning algorithm to read codes with good robustness.
- Adopts a built-in screen to view the statistical data and adjust parameters via pressing the button.
- Adopts multiple indicators to show device status from different sides.
- Rotatable cable design for flexible mounting.
- Adopts controllable light source design to provide diversified light according to workpiece material.
- Adopts I/O interfaces for input and output signals.
- Supports high-precision sensors to get the installation position.
- Supports board selection of accessories, such as multi-color light source or wafer light source, for improving code-reading ability and scene adaptability.

---

#### Note

- The specific functions may differ by device models.
- Refer to the device's datasheet for specific parameters.

---

# Chapter 3 Appearance

## Note

Appearance here is for reference only. Refer to the device's datasheet for detailed dimension information.

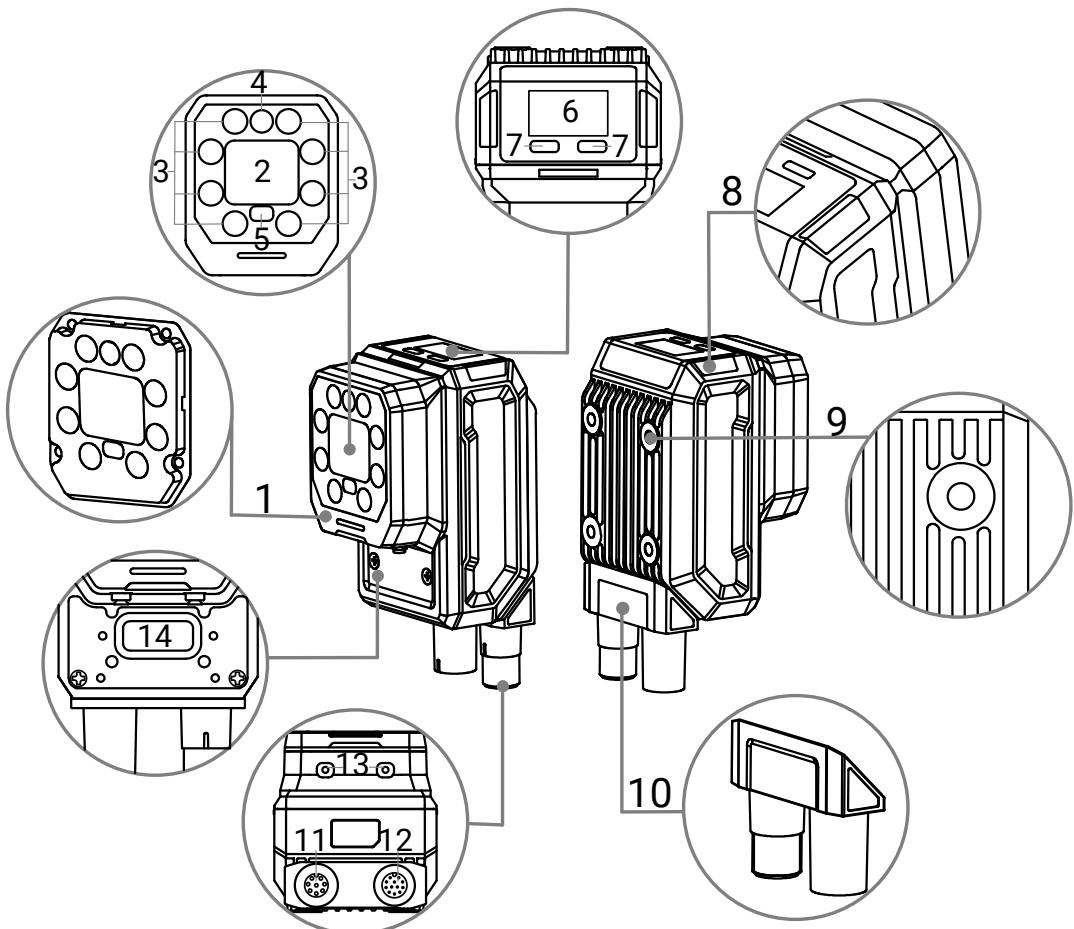



Figure 3-1 Appearance

Table 3-1 Component Description

| No. | Name               | Description                                                                                                                                      |
|-----|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Lens Cap           | It refers to half-polarization lens cap by default, and can be replaced with other lens cap. Transparent and polarization lens cap are optional. |
| 2   | Acquisition Module | It is used to acquire images.                                                                                                                    |
| 3   | Light Source       | It refers to 8 red LED lamps providing light for improving code                                                                                  |

## ID5000X Series Industrial Code Reader User Manual

---

| No. | Name                           | Description                                                                                                                                                                                  |
|-----|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                | reading effect.<br> <b>Note</b><br>The default color of LED lamps is red. White, blue, and IR are optional. |
| 4   | Aiming System                  | It is orange LED light used to show the field of view and aim targets.                                                                                                                       |
| 5   | TOF                            | It is used to detect the position of targets, and realize focus and image parameter adjustment.                                                                                              |
| 6   | Screen                         | It is used to view the statistical data and adjust parameters via pressing the button.                                                                                                       |
| 7   | Button                         | You can press the button on the screen to switch menu or confirm the information.                                                                                                            |
| 8   | Indicator                      | It is a 360° visible indicator for observing the device's status.                                                                                                                            |
| 9   | Screw Hole<br>(Back Side)      | It is used to fix the device, and you should use M4 screws.                                                                                                                                  |
| 10  | Right Angle Rotation Structure | It is used to rotate the device's cables.                                                                                                                                                    |
| 11  | Power and I/O Connector        | It provides power, I/O, and serial port signal.                                                                                                                                              |
| 12  | Network Interface              | It is fast Ethernet for transmitting data.                                                                                                                                                   |
| 13  | Screw Hole<br>(Bottom Side)    | It is used to connect the light source, protective cover, and other accessories, and you should use M4 screws.                                                                               |
| 14  | Extended Light Mount           | It is used to connect to the flash light source, multi-color light source, or wafer light source. Remove the front cover before connection.                                                  |

# Chapter 4 Connector and Indicator

## 4.1 12-Pin M12 Connector

Read the following section to get pin definitions of 12-pin M12 connector.

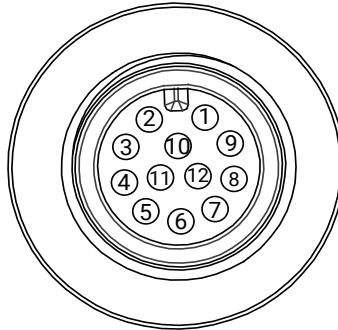
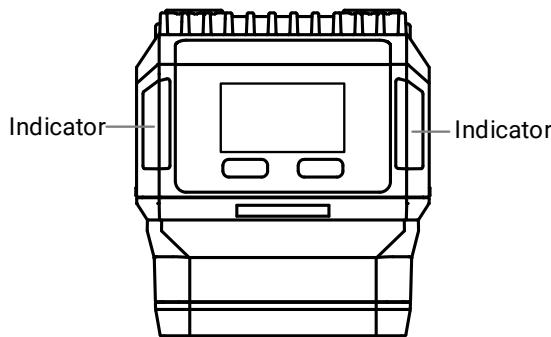



Figure 4-1 12-Pin M12 Connector

Table 4-1 Pin Definitions

| No. | Signal     | I/O Signal Source                 | Description                          | Cable Color | Pin Diameter |
|-----|------------|-----------------------------------|--------------------------------------|-------------|--------------|
| 1   | DC-PWR     | --                                | Direct current power supply positive | White       | 26           |
| 2   | GND        | --                                | Power supply ground                  | Brown       | 26           |
| 3   | OPTO_OU T3 | Output signal line of pin 3       | I/O isolated output 3                | Green       | 26           |
| 4   | OPTO_OU T4 | Output signal line of pin 4       | I/O isolated output 4                | Yellow      | 26           |
| 5   | OPTO_OU T5 | Output signal line of pin 5       | I/O isolated output 5                | Gray        | 26           |
| 6   | OUT_COM    | Output signal ground of pin 3/4/5 | Output common port                   | Pink        | 26           |
| 7   | OPTO_IN0   | Input signal line of pin 0        | I/O isolated input 0                 | Blue        | 26           |
| 8   | OPTO_IN1   | Input signal line of pin 1        | I/O isolated input 1                 | Red         | 26           |
| 9   | OPTO_IN2   | Input signal line of pin 2        | I/O isolated input 2                 | Black       | 26           |
| 10  | IN_COM     | Input signal ground of pin 0/1/2  | Input common port                    | Purple      | 26           |
| 11  | RS-232_R   | --                                | RS-232 input                         | Gray/Pink   | 26           |


| No. | Signal   | I/O Signal Source | Description   | Cable Color | Pin Diameter |
|-----|----------|-------------------|---------------|-------------|--------------|
| 12  | RS-232_T | --                | RS-232 output | Red/Blue    | 26           |

 **Note**

- You should refer to the table above and the label attached to the supplied power and I/O cable to wire the device.
- The cable colors mentioned above are applicable to the 12-pin M12 to open I/O cable sold by our company. If other cables are used, please refer to the actual one.

## 4.2 Indicator

You can observe the device's indicator to check whether the device operates normally or not.

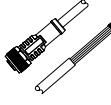
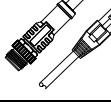
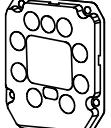
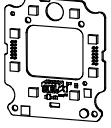
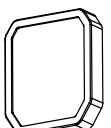


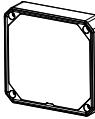
**Figure 4-2 Device Indicator**

**Table 4-2 Indicator Description**

| Indicator Status |    | Device Status                           |
|------------------|----|-----------------------------------------|
| Unlit            | -- | Not Streaming                           |
| Unlit            | -- | Streaming                               |
| Flashing Green   | █  | Successful Code Reading (Not Streaming) |
| Flashing Red     | █  | Failed Code Reading (Not Streaming)     |
| Unlit            | -- | Power Off                               |
| Unlit            | -- | Network Exception                       |
| Flashing Green   | █  | Successful Code Reading                 |
| Flashing Red     | █  | Failed Code Reading                     |
| Flashing Green   | █  | Successful Parameter Adjustment         |
| Flashing Red     | █  | Failed Parameter Adjustment             |
| Unlit            | -- | Parameter Adjustment Ended              |

# Chapter 5 Installation






## 5.1 Installation Preparation



You need to prepare following accessories before installation. The included accessories are in the device's package, and you can purchase optional accessories according to actual demands.

**Table 5-1 Included Accessories**

| No. | Name                 | Image                                                                             | Quantity | Description                   |
|-----|----------------------|-----------------------------------------------------------------------------------|----------|-------------------------------|
| 1   | Installation Bracket |  | 1        | It is used to fix the device. |

**Table 5-2 Optional Accessories**

| No. | Name                 | Image                                                                               | Quantity | Description                                                                                                                                           |
|-----|----------------------|-------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Power and I/O Cable  |  | 1        | (Required) It refers to the 12-pin M12 to open I/O cable.                                                                                             |
| 2   | M12 Network Cable    |  | 1        | (Required) It refers to the 8-pin M12 to RJ45 network cable.                                                                                          |
| 3   | Power Adapter        |                                                                                     | 1        | (Required) You should select suitable power adapter or switch power supply according to the device power supply and consumption in the specification. |
| 4   | Lens Cap             |  | 1        | The lens cap can be replaced with other lens cap according to actual demands, such as transparent or polarization lens cap.                           |
| 5   | Light Board          |  | 1        | The light board can be replaced with white/blue/IR light board according to actual demands.                                                           |
| 6   | ESD Protective Cover |  | 1        | It is used to achieve ESD protection.                                                                                                                 |

| No. | Name                     | Image                                                                             | Quantity | Description                                                                                                                           |
|-----|--------------------------|-----------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------|
| 7   | Wafer Light Source       |  | 1        | It meets the requirements of wafer scene.                                                                                             |
| 8   | Multi-Color Light Source |  | 1        | It provides multiple colors, such as white, red, blue, and green, to meet the requirements of different backgrounds for code reading. |
| 9   | Flash Light Source       |  | 1        | It meets the requirements of scene with far distance, wide field of view, or high reflectivity.                                       |

## 5.2 Install Device

### Before You Start

- Make sure the device in the package is in good condition and all the assembly parts are included.
- Make sure that all the related devices are powered off during the installation.

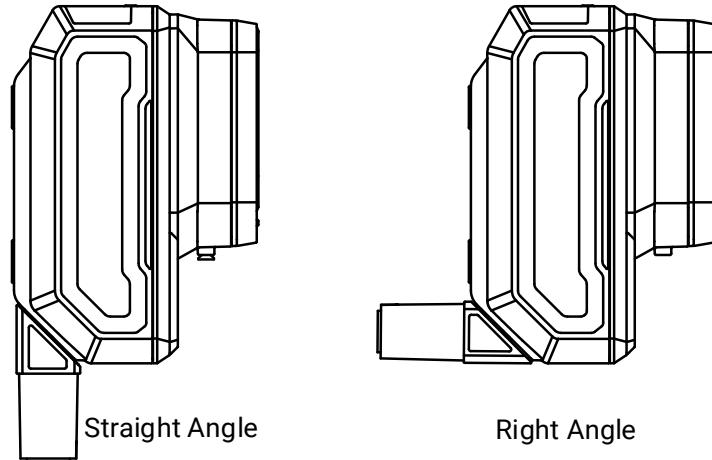
### Steps

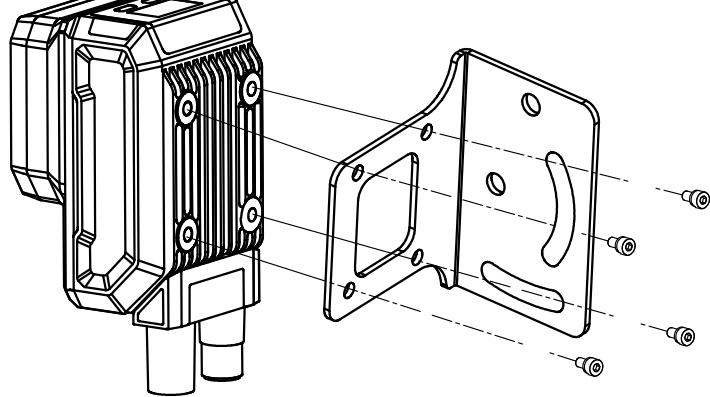
1. Select a suitable installation location according to the device's field of view.



Refer to the device's specifications for detection range.

2. Adjust the device's right angle rotation structure according to the installation location.



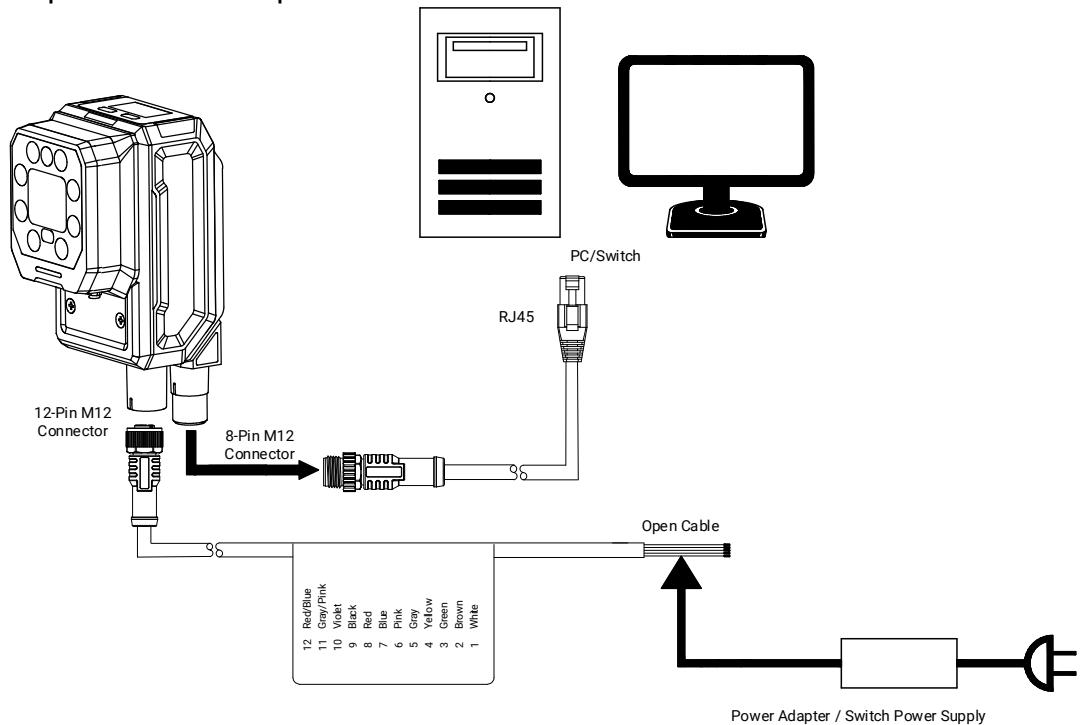


Figure 5-1 Adjust Right Angle Rotation Structure



## Note

Refer to the device's specifications for the dimension of the right angle rotation structure.

3. Use M3 screws to fix the installation bracket to the device, as shown below.




**Figure 5-2 Fix Installation Bracket**

4. Install the device to the installation location.

## 5.3 Wire Device

After installing the device, you should use the power and I/O cable, M12 network cable, and power adapter to wire and power the device.



**Figure 5-3 Device Connection**

## Steps

1. Use the supplied 8-pin M12 network cable to connect the device's network interface.

---



### Note

The connector has screw thread, and it is recommended to tighten the connector before using the device to reduce looseness due to the vibration on-site.

---

2. Insert the RJ45 port of the supplied M12 network cable to the PC.

3. Use the supplied power and I/O cable to connect the device's 12-pin connector.

---



### Note

The connector has screw thread, and it is recommended to tighten the connector before using the device to reduce looseness due to the vibration on-site.

---

4. Select suitable power adapter to connect the open cables of the supplied power and I/O cable for power supply.

---



### Note

- The device's indicator is in blue color after the device is powered on.
- Refer to the section [\*\*12-Pin M12 Connector\*\*](#) for specific cable color of open lines.

---

# Chapter 6 Quick Start Guide

## 6.1 Configure via Screen

You can press the button to view the statistical data and adjust parameters on the screen.



Figure 6-1 Device Screen

The picture below shows the settings on the screen.



Figure 6-2 Settings on Screen



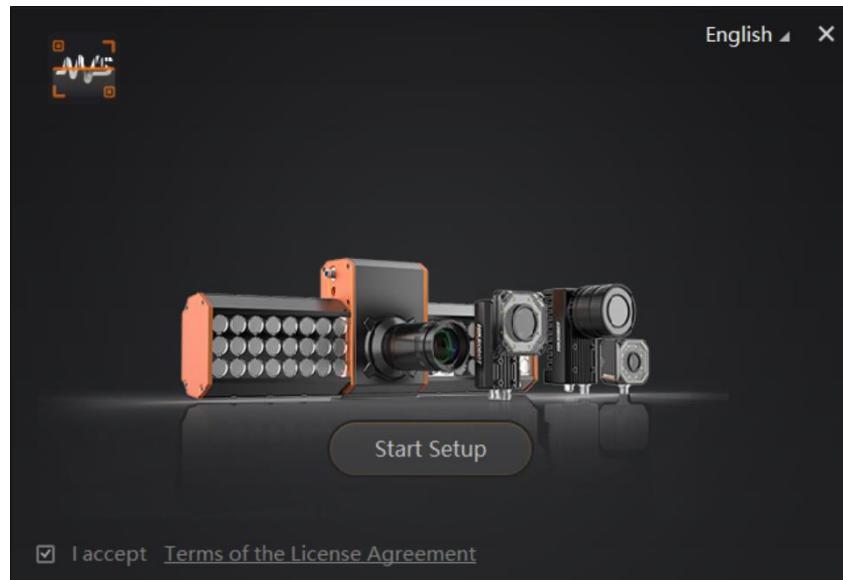
Refer to section [Screen Settings](#) for details.

## 6.2 Configure via Client Software

### 6.2.1 Install Client Software

IDMVS is a client software for device configuration and remote operations.

#### Steps


---

##### Note

- The client software is compatible with 32/64-bit Windows XP/7/10.
- You can get the client software installation package from <https://en.hikrobotics.com/>. It is recommended to use the latest version of the client software.
- The graphic user interface may differ by different versions of client software you use.
- The client integrates the required drivers for the device, so there is no need to download and install other drivers.

---

1. Double click the installation package to start installing the client software.
2. Select the language.
3. Read and check **Terms of the License Agreement**.
4. Click **Start Setup**.
5. Select installation directory and click **Next**.



**Figure 6-3 Installation Interface**

6. Finish the installation according to the interface prompts.

### 6.2.2 Set PC Environment

To ensure stable image transmission and normal communication between the PC and the

device via client software, you need to set the PC network before using the client software.

## Note

For different Windows versions, the specific setting path and graphic user interface may differ. Please refer to the actual condition.

## Steps

1. Go to PC network settings: **Start** → **Control Panel** → **Network and Internet** → **Network and Sharing Center** → **Change adapter settings**.
2. Select NIC and set the IP obtainment mode.
  - Select **Obtain an IP address automatically** to get an IP address of the PC automatically.
  - Select **Use the following IP address** to set an IP address for the PC manually.
3. Make sure that the PC and the device are in the same network segment.

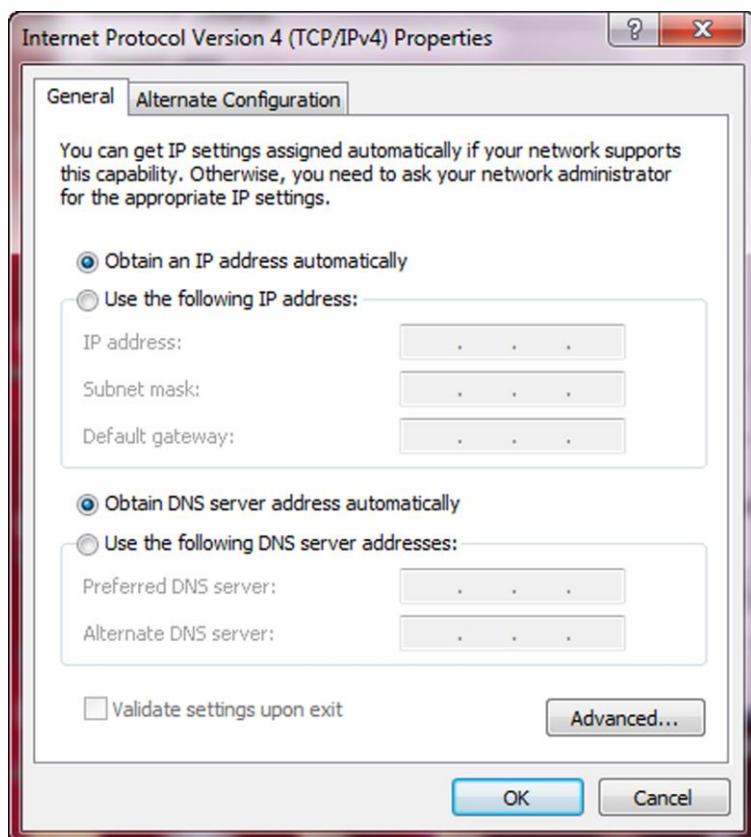
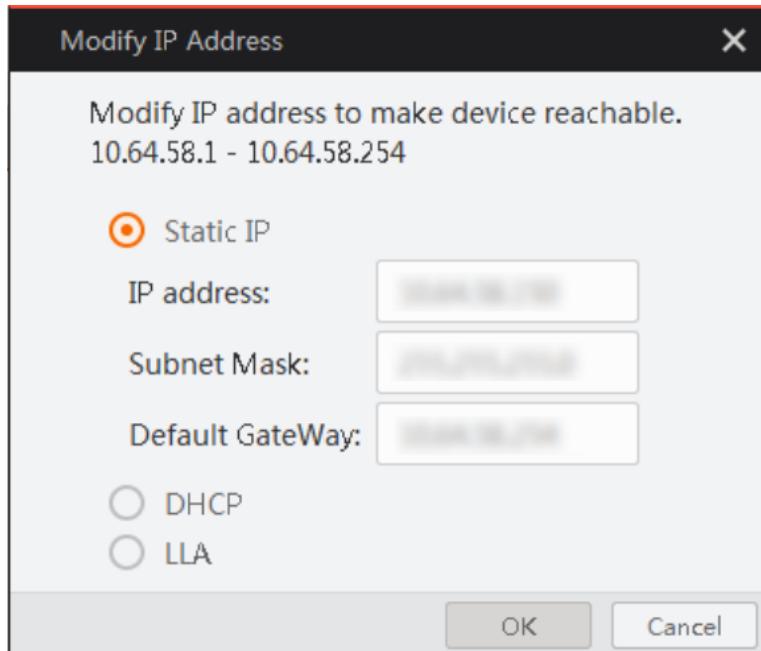



Figure 6-4 Set PC Network


## 6.2.3 Set Device Network and Connect to Client Software

You can set and operate the device in the client software only when the device is in the same

network segment with the PC where the client software is installed.

## Steps

1. Double click the client software to run it.
2. Click  to find the device.
3. Click the device to be connected, and click **Modify IP**.
4. Set the IP address of the device in the same network segment with the PC, and click **OK**.



**Figure 6-5 Modify IP Address**

5. Double click the device in device list or click  to connect it to the client software.

# Chapter 7 Basic Operation

## 7.1 Client Software Layout

The main window of the client software is displayed after the device is connected to the client software.

### Note

- The graphic user interface may differ by different versions of client software you use.
- Refer to the user manual of the client software for detailed operation guide.

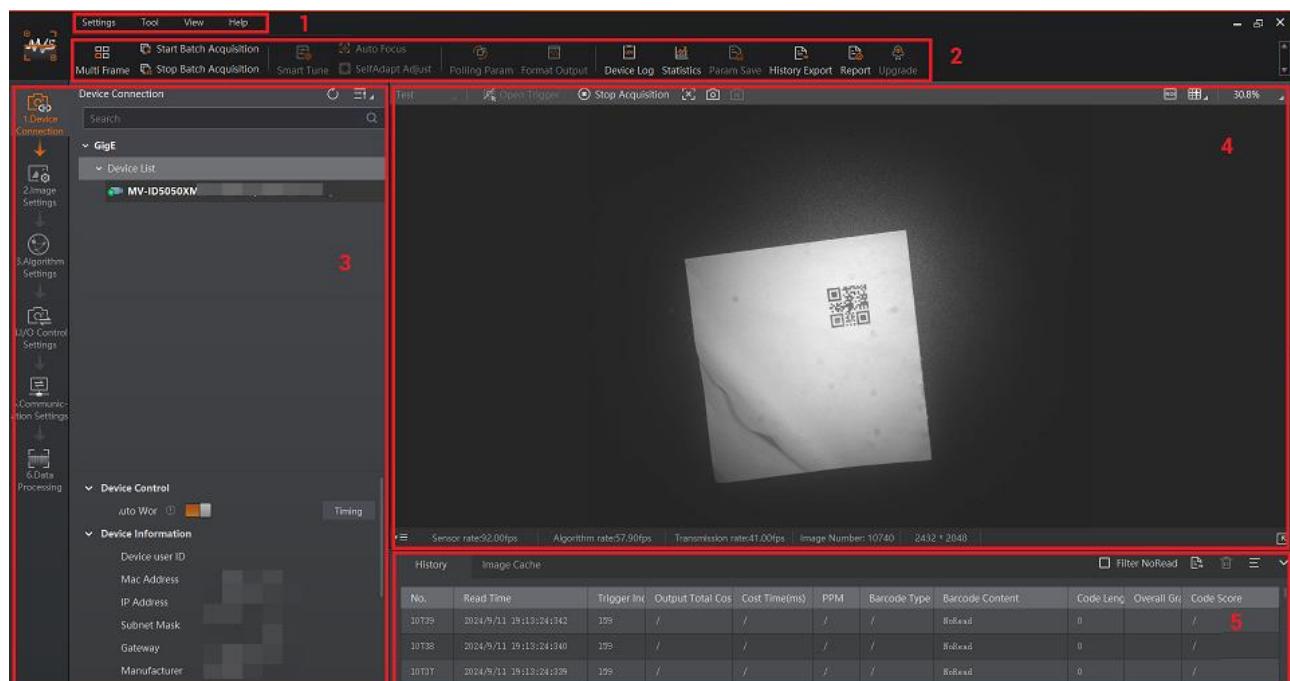


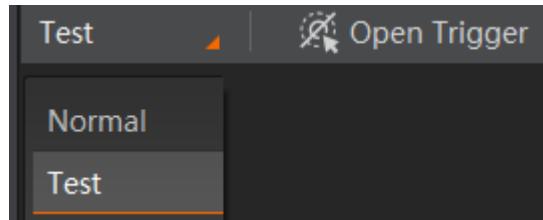

Figure 7-1 Main Window

Table 7-1 Main Window Description

| No. | Name            | Description                                                                                                                                                                                                                                                           |
|-----|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Menu Bar        | Provides access to function modules including Settings, Tool, View, and Help.                                                                                                                                                                                         |
| 2   | Control Toolbar | Provides access to functions such as starting/ending batch acquisition, switching the window division mode, viewing real-time statistics during acquisition, and viewing device logs, and quick access to tools such as Smart Tune, Auto Focus, and SelfAdapt Adjust. |

| No. | Name                              | Description                                                                                                                                                                                                                                                                                                                                                                                               |
|-----|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | Device Configuration Wizard Panel | Displays the wizard for device configuration. In the Device Information field, you can view information about a device and its corresponding network interface. You can connect device(s) to the Software, manage devices by groups, and configure parameters related to image settings, algorithm settings, I/O control settings, communication settings, data processing, and configuration management. |
| 4   | Live View Window                  | Displays the live video of the selected device(s).                                                                                                                                                                                                                                                                                                                                                        |
| 5   | History Panel                     | Displays the code reading history of device(s). You can also view the real-time reading results during acquisition.                                                                                                                                                                                                                                                                                       |

The device configuration wizard panel and control toolbar help you perform some basic operations of the device.


**Table 7-2 Device Configuration Wizard Panel Description**

| No. | Module Name            | Description                                                                                       |
|-----|------------------------|---------------------------------------------------------------------------------------------------|
| 1   | Device Connection      | You can connect or disconnect device, modify device IP address, and view device information, etc. |
| 2   | Image Settings         | You can set image parameters and light parameters, etc.                                           |
| 3   | Algorithm Settings     | You can add different code type and set code number, etc.                                         |
| 4   | I/O Control Settings   | You can set parameters related with input and output.                                             |
| 5   | Communication Settings | You can select different communication protocols, and set parameters for output result.           |
| 6   | Data Processing        | You can set filter rule for output result.                                                        |

## 7.2 Basic Operation

### Steps

1. Go to the left corner of live view window, and select the operation mode.



**Figure 7-2 Select Operation Mode**

---



**Note**  
Stopping the real-time acquisition is required before selecting the operation mode.

---

**Table 7-3 Operation Mode Description**

| Device Mode | Description                                                                                                                  |
|-------------|------------------------------------------------------------------------------------------------------------------------------|
| Test Mode   | It is used during device debugging. The device outputs images that are acquired in real-time, and displays code information. |
| Normal Mode | It is used during device normal operation. After reading code in image, the device outputs image and code information.       |

---



If the raw data should be output, you can go to **Image Settings** → **Image** to enable **RawModeEnable**.

---

2. Click **Start Acquisition**  in the live view window to view images and the code reading effect.



**Figure 7-3 Code Reading Effect**

---



If the effect is not very good, you can adjust related parameters like exposure time, gain, etc. in the **Image Settings** area.

---

3. Click **Smart Tune**  in the control toolbar to perform smart tune and adjust parameters like exposure, gain, etc. if the code reading effect is not very good, or click  to execute polling of multiple sets of parameters.

## Note

- Click **Auto Focus**  if you want to adjust focus parameters only.
- Click **SelfAdapt Adjust**  if you want to perform self-adaptive adjustment only.

4. Go to **Algorithm Settings** in configuration wizard panel to add code types accordingly.

5. Go to **I/O Control Settings** to set input and output parameters.

6. Go to **Communication Settings** to select communication protocols and set parameters.

7. Click **Format Output**  in the control toolbar to set the format of the output data.

## Note

If the SmartSDK is selected as the communication protocol, the format output is not supported.

8. (Optional) Go to **Device Connection** to set other parameters of the device accordingly.

9. Click  to save and load user sets, or use default settings.

10. (Optional) Go to history panel to view codes recognized by the device, and click  to add other fields.

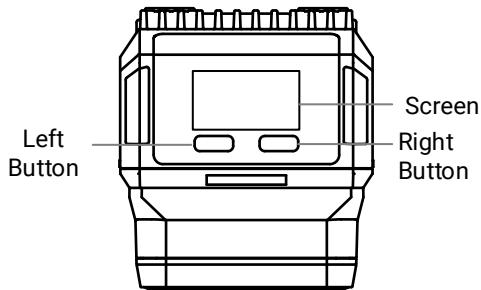

| History |                        |             |                  |               |     |              |                 |           |            |            | Image Cache |        |        |  |  |  |  |
|---------|------------------------|-------------|------------------|---------------|-----|--------------|-----------------|-----------|------------|------------|-------------|--------|--------|--|--|--|--|
| No.     | Read Time              | Trigger Inc | Output Total Cos | Cost Time(ms) | PPM | Barcode Type | Barcode Content | Code Leng | Overall Gr | Code Score |             | Filter | NoRead |  |  |  |  |
| 2257    | 2024/9/11 19:48:56:412 | 350         | /                | /             | /   | /            | NoRead          | 0         |            | /          |             |        |        |  |  |  |  |
| 2256    | 2024/9/11 19:48:56:252 | 0           | /                | /             | /   | /            | NoRead          | 0         |            | /          |             |        |        |  |  |  |  |
| 2255    | 2024/9/11 19:48:56:127 | 350         | /                | /             | /   | /            | NoRead          | 0         |            | /          |             |        |        |  |  |  |  |

Figure 7-4 History Record

# Chapter 8 Screen Settings

## 8.1 Screen Introduction

After the device is connected, you can view the code data and set some parameters on the screen.



**Figure 8-1 Device Screen**

- Screen: Displays code data and parameter settings.
- Button: Switch and confirm the parameters. When you press and hold any button for up to 5 seconds, the data on the current screen will be automatically cleared.

---

 **Note**

- When no operation is executed after 3 minutes, the screen will be automatically locked.
- After the device is connected, a message "PC connection..." will prompt on the screen.



**Figure 8-2 PC Connection**

## 8.2 Function Introduction

### 8.2.1 View Data

You can view code reading rate and decoding time cost on the screen.

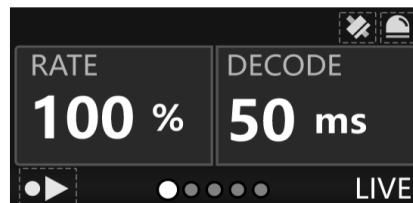



Figure 8-3 Code Data



Press the right button to show the live view.

---

### 8.2.2 Smart Tune

The smart tune function allows you to adjust the device's focus position and other image parameters by one-key operation

#### Steps

1. Press the left button to switch to the **Smart Tune**.

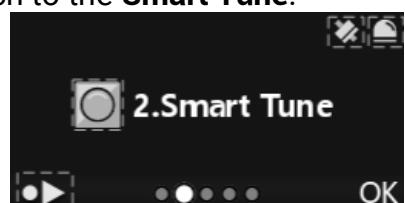



Figure 8-4 Smart Tune

2. Press the right button to select **OK**.

3. (Optional) Press the button to select the user set.

---



User set 1/2/3/4 are available.

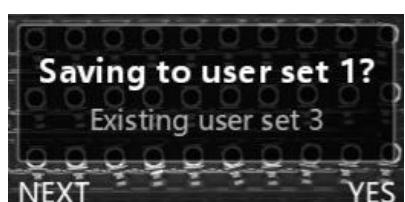


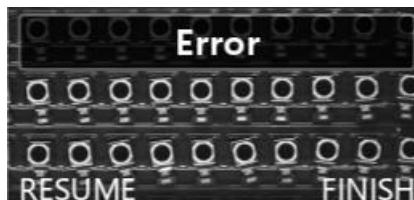

Figure 8-5 User Set

4. (Optional) Press the button to adjust focus.



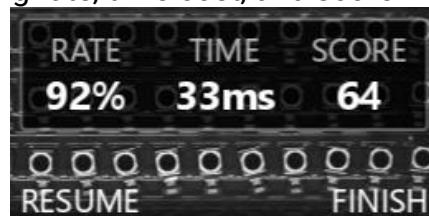
**Figure 8-6 Focus Adjustment**

5. (Optional) Press the button to save polling parameter.




**Figure 8-7 Polling Parameter**

6. The device will execute the smart tune and the message will prompt.




**Figure 8-8 Success**



**Figure 8-9 Error**

7. (Optional) After the smart tune is succeeded, you can press the left button TEST to view the result, such as code reading rate, time cost, and score.



**Figure 8-10 Result**

### 8.2.3 Trigger

You can trigger the device for debugging and view the result (OK means succeeded and

NG means failed).

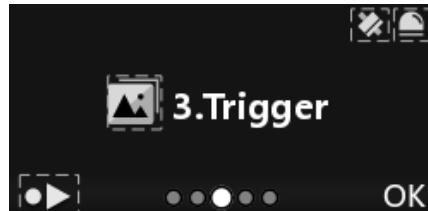



Figure 8-11 Trigger

### 8.2.4 Parameter Settings

You can set some key parameters, such as aiming system, light source, and auto work.

- Aiming system: Enable or disable the aiming system.
- Light source: Select Solid or Strobe mode.
- Auto work: Enable or disable the auto work. After the parameter is enabled, the device will work automatically even if the IDMVS is closed.

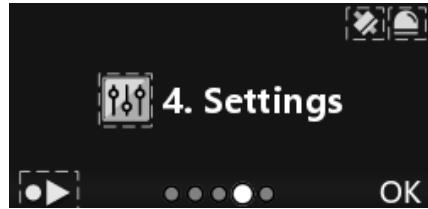



Figure 8-12 Settings

### 8.2.5 System Information

You can view system information including firmware version, algorithm version, serial number, ID, and other information.

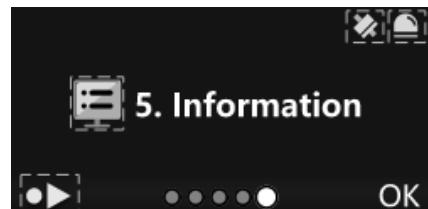



Figure 8-13 Information

# Chapter 9 Client Software Settings

## 9.1 Feature Tree Introduction

After the device is connected to the client software, you can right click the device in **Device Connection**, and click **Feature Tree**.

---



The parameters of the feature tree may differ by device models and firmware versions.

---

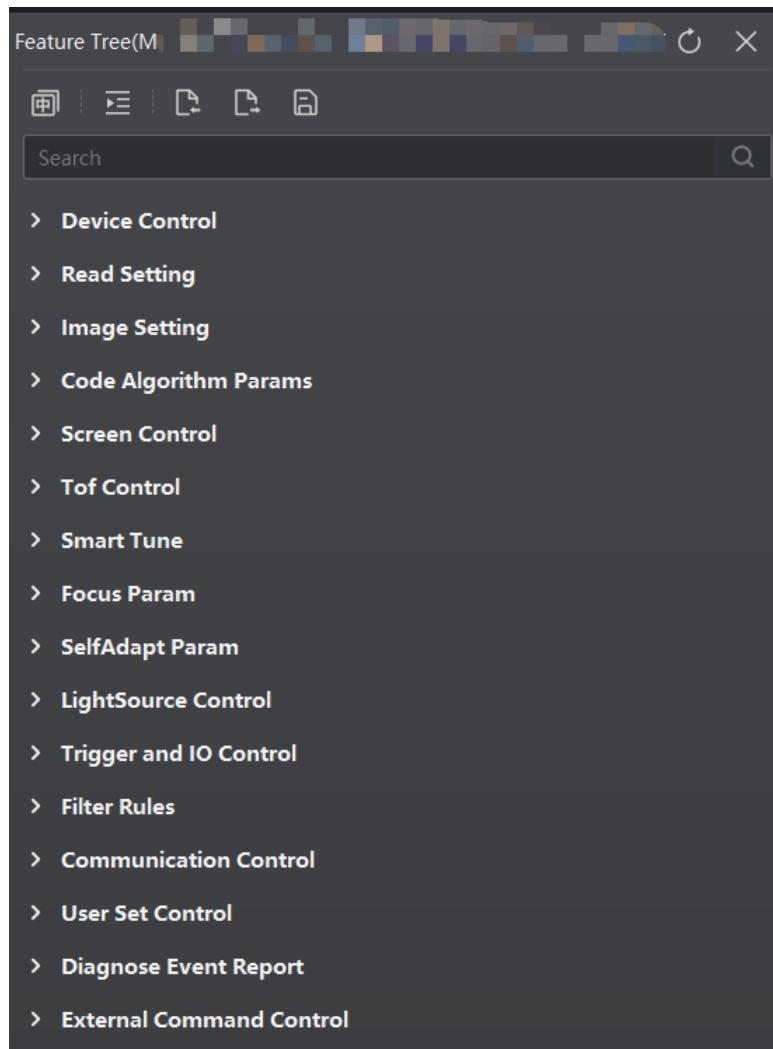
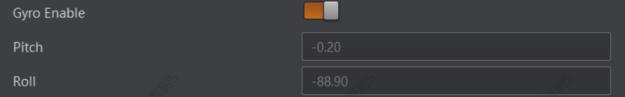




Figure 9-1 Feature Free

Table 9-1 Feature Tree Description

| Name                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Device Control         | <p>It allows you to view the device's information, edit its name, and reset the device.</p> <p> <b>Note</b></p> <p>When the device is equipped with multiple high-precision sensors, you can enable <b>Gyro Enable</b> in <b>Device Control</b> to set pitch and roll of the device for quickly copying the mounting position.</p>  |
| Read Setting           | It allows you to set the device's operation mode and select code types.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Image Setting          | It allows you to set frame rate, exposure, gain, and Gamma, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Code Algorithm Params  | It allows you to set algorithm parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Screen Control         | It allows you to set screen-related parameters, including adjusting brightness, switching language, and setting home page.                                                                                                                                                                                                                                                                                                                                                                             |
| ToF Control            | It allows you to set ToF-related parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Smart Tune             | It allows you to execute smart tune.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Focus Param            | It allows you to adjust focus for improving image quality.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SelfAdapt Param        | It allows you to quickly adjust some parameters, such as exposure and gain.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| LightSource Control    | It allows you to set the light source's parameters.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Trigger and IO Control | It allows you to set parameters of input and output.                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Filter Rules           | It allows you to set the filter rule of codes.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Contrast Control       | <p>It allows you to compare the data that the device reads with preset data and output contrast result.</p> <p> <b>Note</b></p> <p>It is available only when the operation mode is Normal.</p>                                                                                                                                                                                                                      |
| Communication Control  | It allows you to set parameters related to different communication protocols.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Result Setting Control | It allows you to set parameters of output contents.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| Name                     | Description                                                                                                                                                                                                                                             |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |  <b>Note</b><br>It is available only when the operation mode is Normal.                                                                                                |
| MultiCamera Control      | It allows you to set parameters of multi-camera to let them operate in a collaborative way.<br> <b>Note</b><br>It is available only when the operation mode is Normal. |
| Statistics Info          | It allows you to count data related to code reading.<br> <b>Note</b><br>It is available only when the operation mode is Normal.                                        |
| User Set Control         | It allows you to save and load configured user set.                                                                                                                                                                                                     |
| Diagnose Event Report    | It allows you to monitor memory and CPU usage rate, and let you know when there is a crash, higher CPU usage rate, insufficient memory, etc.                                                                                                            |
| External Command Control | It allows you to set communication parameters between the device and external devices.                                                                                                                                                                  |

## 9.2 Image Quality Settings

This section introduces how to set image-related parameters of the device via client software.

### 9.2.1 Set Image

You can set parameters like exposure time, gain, Gamma, acquisition frame rate, acquisition burst frame count, etc. in **Image Settings** area.



- For specific parameter range like exposure time, gain and acquisition frame rate, refer to the device's specification for details.
- Specific parameters of this function may differ by device models.

**Table 9-2 Set Image Parameters**

| Name              | Description                                                                                                                                                    |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Exposure Time(μs) | You can increase exposure time to improve image brightness.<br> <b>Note</b> |

| Name                          | Description                                                                                                                                                                                                                                    |
|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | Increasing exposure time may reduce acquisition frame rate, and impact image quality.                                                                                                                                                          |
| Gain(dB)                      | <p>You can increase gain to improve image brightness.</p> <p> <b>Note</b></p> <p>Increasing gain will create more image noises, and impact image quality.</p> |
| Gamma                         | Gamma allows you to adjust the image contrast. It is recommended to reduce Gamma to increase brightness in dark background.                                                                                                                    |
| Acquisition Frame Rate(fps)   | Acquisition frame rate refers to the image quantity that is acquired by the device per second.                                                                                                                                                 |
| Acquisition Burst Frame Count | Acquisition burst frame count refers to the output image quantity when the device is triggered once.                                                                                                                                           |

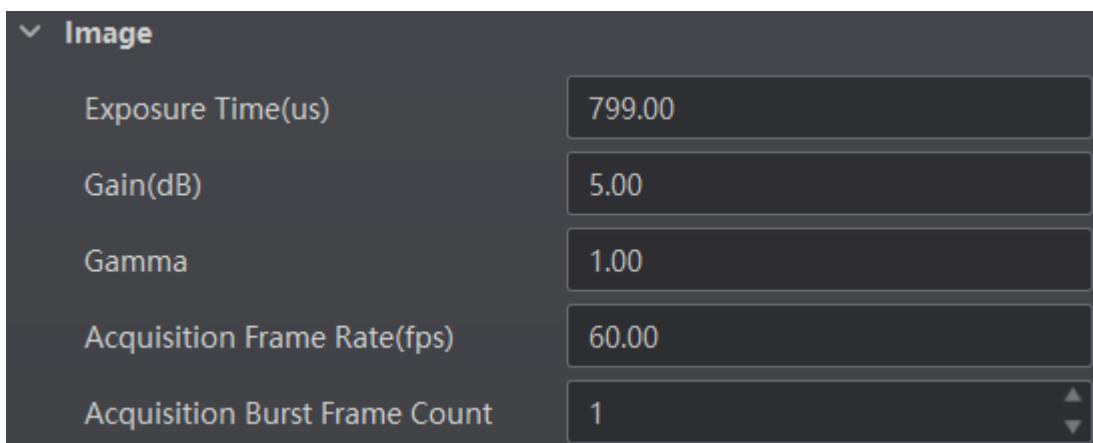



Figure 9-3 Set Image Parameters

## 9.2.2 Set Exposure

The device supports three types of exposure modes, including off, once, and continuous. Refer to the table below for details.

Table 9-3 Exposure Mode

| Exposure Mode | Description                                                                                                                               |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Off           | The device exposures according to the value configured by the user in <b>Exposure Time(μs)</b> .                                          |
| Once          | The device adjusts the exposure time automatically according to the image brightness. After adjusting once, the device will switch to off |

| Exposure Mode | Description                                                                          |
|---------------|--------------------------------------------------------------------------------------|
|               | mode.                                                                                |
| Continuous    | The device adjusts the exposure time continuously according to the image brightness. |

## Once or Continuous Exposure

### Steps

1. Right click the device in **Device Connection**, and click **Feature Tree**.
2. Go to **Image Setting**, and select **Once** or **Continuous** as **Exposure Auto** according to actual demands.
3. Select **Global** or **Partial** as **Exposing Area** according to actual demands.
4. (Optional) Set specific exposure area if **Partial** is selected.
  - Area Width: It refers to the horizontal resolution in partial exposure area.
  - Area Height: It refers to the vertical resolution in partial exposure area.
  - Offset X: It refers to the horizontal coordinate of the upper-left corner in partial exposure area.
  - Offset Y: It refers to the vertical coordinate of the upper-left corner in partial exposure area.

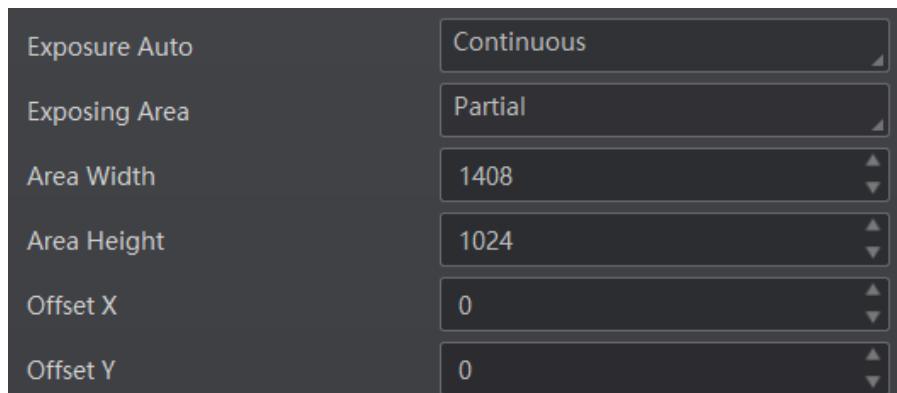



Figure 9-4 Once or Continuous Exposure

### 9.2.3 Set Gain

The device supports three types of gain modes, including off, once, and continuous. Refer to the table below for details.

Table 9-4 Gain Mode

| Gain Mode | Description                                                                               |
|-----------|-------------------------------------------------------------------------------------------|
| Off       | The device adjust gain according to the value configured by the user in <b>Gain(dB)</b> . |

| Gain Mode  | Description                                                                                                                        |
|------------|------------------------------------------------------------------------------------------------------------------------------------|
| Once       | The device adjusts gain automatically according to the image brightness. After adjusting once, the device will switch to off mode. |
| Continuous | The device adjusts gain continuously according to the image brightness.                                                            |

## Once or Continuous Gain

### Steps

1. Right click the device in **Device Connection**, and click **Feature Tree**.
2. Go to **Image Setting**, and select **Once** or **Continuous** as **Gain Auto** according to actual demands.

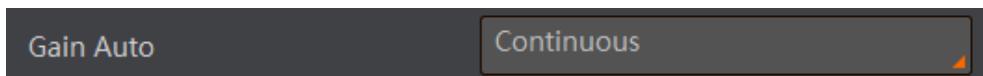



Figure 9-5 Once or Continuous Gain

## 9.2.4 Set Polling

The polling function allows the device to acquire images based on the parameters you set, including exposure time, gain, Gamma, and light source. Currently, 2 types of polling modes are available, including single mode and multiple mode.

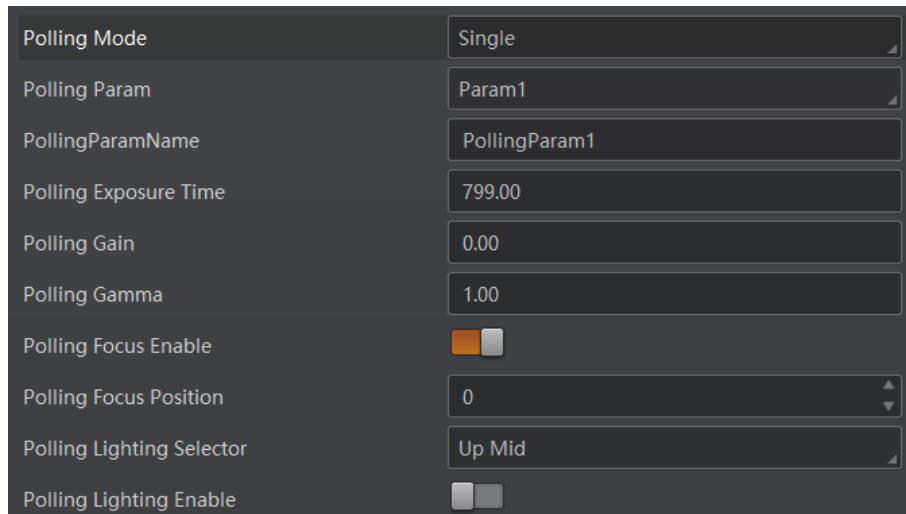
### Note

- Stopping the real-time acquisition is required before setting the polling function.
- It is recommended to use the polling function under the normal operation mode, and the test mode is used for debugging only.
- Make sure the trigger mode is opened before setting the polling function.
- After the polling function is enabled, the device acquires images with its max. frame rate. Once the polling disabled, the frame rate you set in **Acquisition Frame Rate** takes effect.
- The polling function and specific parameters may differ by device models.

## Single Mode

### Steps

1. Right click the device in **Device Connection**, and click **Feature Tree**.
2. Go to **Image Setting** → **Polling Mode**, and select **Single** as **Polling Mode**.
3. Select one parameter (e.g. **Param1**) from **Polling Param**.


### Note

Up to 8 sets of parameter can be selected from **Polling Param**.

4. Set parameters related to the polling like **Polling Exposure Time**, **Polling Gain**, **Polling Gamma**, etc. according to actual demands.

**Table 9-5 Parameters of Single Mode Polling**

| Parameter                 | Description                                                                                                                                                                                                                                                                                   |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Polling Exposure Time     | It sets the exposure time of polling, and the unit is $\mu$ s.                                                                                                                                                                                                                                |
| Polling Gain              | It set the polling gain, and the unit is dB.                                                                                                                                                                                                                                                  |
| Polling Gamma             | It sets the polling Gamma value. <ul style="list-style-type: none"> <li>• If the value is between 0 and 1, the image brightness increases and dark area becomes brighter.</li> <li>• If the value is between 1 and 4, the image brightness decreases and dark area becomes darker.</li> </ul> |
| Polling Focus Enable      | After enabling this parameter, you can set polling focus position.                                                                                                                                                                                                                            |
| Polling Focus Position    | It sets the polling focus position.                                                                                                                                                                                                                                                           |
| Polling Lighting Selector | It selects lamps on different directions, including up/down and mid.                                                                                                                                                                                                                          |
| Polling Lighting Enable   | After enabling this parameter, the light source will turn on.                                                                                                                                                                                                                                 |



**Figure 9-6 Single Mode**

## Multiple Mode



- In multiple mode, the device supports trigger parameters like software trigger, external trigger, etc., does not support stopping polling via the external trigger.
- The rule for multiple-mode polling is that the polling is started from the polling parameter with Best Polling Group Idx, and then execute other polling parameters you selected in turn. For example, if the Param3 is the Best Polling Group Idx and Param1, Param2,

Param4 and Param5 are enabled, the polling order is Param3 > Param1 > Param2 > Param4 > Param5.

### Steps

1. Right click the device in **Device Connection**, and click **Feature Tree**.
2. Go to **Image Setting** → **Polling Mode**, and select **Multiple** as **Polling Enable**.
3. Set **Polling Time** and **Polling Period** according to actual demands.
  - **Polling Time** is used to determine whether the polling is finished or not, and it ranges from 100 to 2147482.
  - **Polling Period** is whole period from Param1 to Param8, and it ranges from 1 to 5000.
4. Select 2 to 8 sets of parameters (e.g. **Param1** and **Param2**) from **Polling Param**, and enable **Polling Param Enable** to let them take effect.
5. Set parameters related to the polling like **Polling Exposure Time**, **Polling Gain**, **Polling Gamma**, etc. according to actual demands.

**Table 9-6 Parameters of Multiple Mode Polling**

| Parameter                 | Description                                                                                                                                                                                                                                                                                   |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Polling Exposure Time     | It sets the exposure time of polling, and the unit is $\mu$ s.                                                                                                                                                                                                                                |
| Polling Gain              | It set the polling gain, and the unit is dB.                                                                                                                                                                                                                                                  |
| Polling Gamma             | It sets the polling Gamma value. <ul style="list-style-type: none"> <li>• If the value is between 0 and 1, the image brightness increases and dark area becomes brighter.</li> <li>• If the value is between 1 and 4, the image brightness decreases and dark area becomes darker.</li> </ul> |
| Polling Focus Enable      | After enabling this parameter, you can set polling focus position.                                                                                                                                                                                                                            |
| Polling Focus Position    | It sets the polling focus position.                                                                                                                                                                                                                                                           |
| Polling Lighting Selector | It selects lamps on different directions, including up/down and mid.                                                                                                                                                                                                                          |
| Polling Lighting Enable   | After enabling this parameter, the light source will turn on.                                                                                                                                                                                                                                 |

6. Repeat Step 5 to set other parameters from **Polling Param**.
7. (Optional) View **Polling Status** and **Best Polling Group Idx**.
  - **Polling Status**: It displays the current polling status. 0 stands for polling ended, and 1 stands for polling started.
  - **Best Polling Group Idx**: It is used to display the polling parameter number when the device recognizes codes after enabling polling. If the polling is disabled or polling parameters are edited, it displays 1 by default.

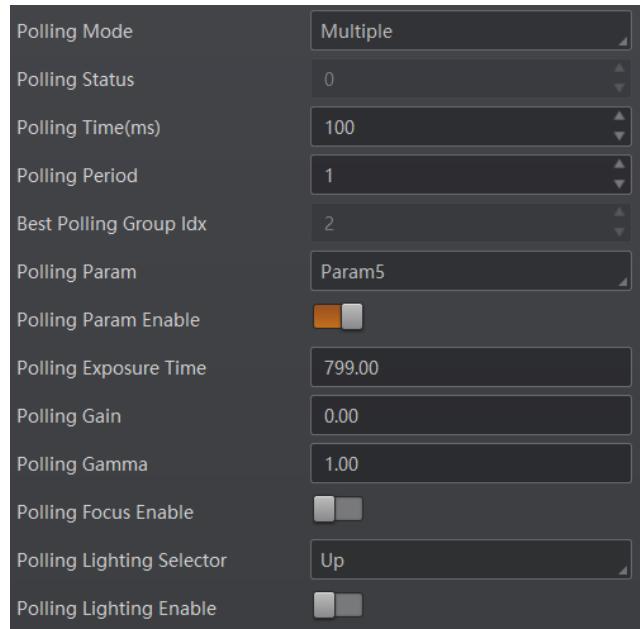



Figure 9-7 Multiple Mode

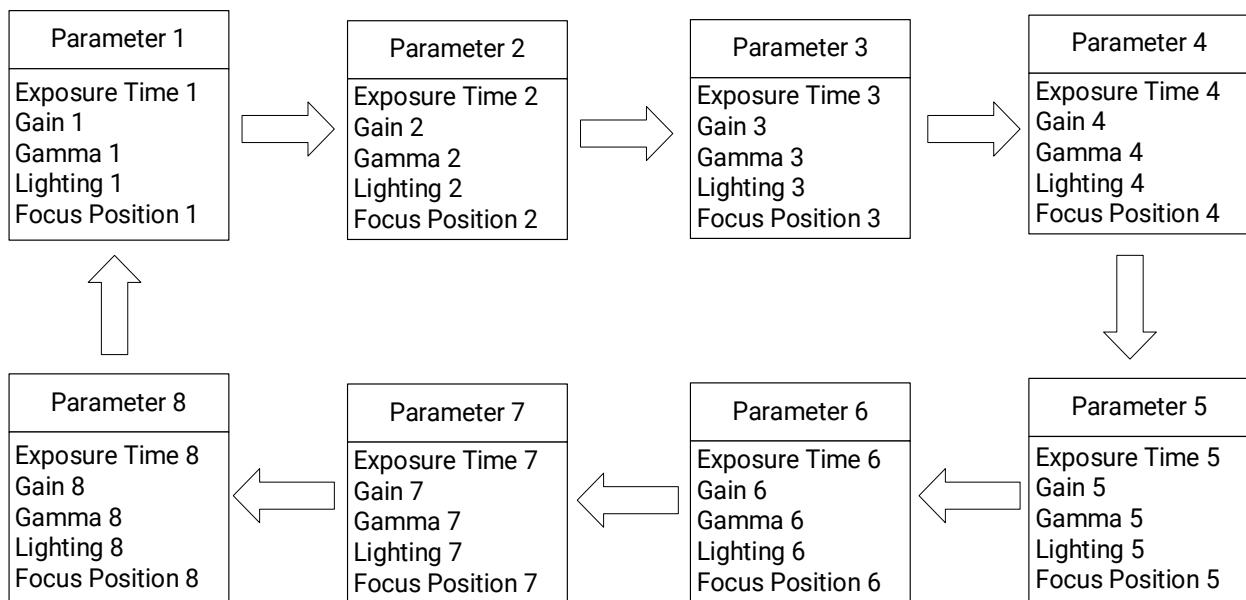



Figure 9-8 Polling Diagram

## 9.2.5 Set Light Source

Light source control allows you to enable the device's aiming system and light source, and set related parameters according to actual demands.

### Steps

1. Go to **Image Settings** → **Light**, and select **AimingLight Enable**.  
  - **Off** means that the aiming light is turned off.

- **Strobe** means that the aiming light is turned on if the device is acquiring images and the aiming light is turned off if the device is not acquiring images.
- **Strobe Long** means that the aiming light is turned on when the device is powered on.

2. Click lamps on the light source illustration to turn on or turn off lamps on different directions.



Click **All On** or **All Off** to turn on or turn off all lamps.

3. Select **Lighting Mode** according to actual demands.

- **Strobe** means the light flashes at a specific interval.
- **Long** means the light is solid.

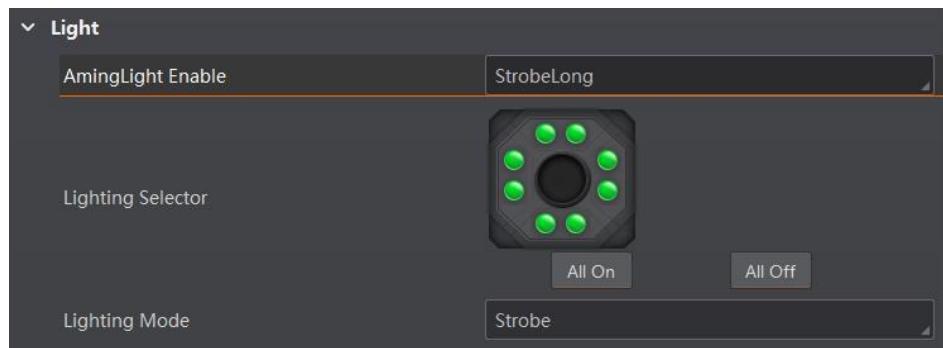



Figure 9-9 Set Light Source

## 9.2.6 Set Smart Tune

The smart tune function allows you to adjust the device's focus position, exposure, and gain, etc. by one-key operation, and supports self-adaptive adjustment.

### Before You Start

Make sure that the device is not in trigger mode, and its operation mode is test.

### Steps

1. Go to **Image Settings** → **SmartTuneControl**.

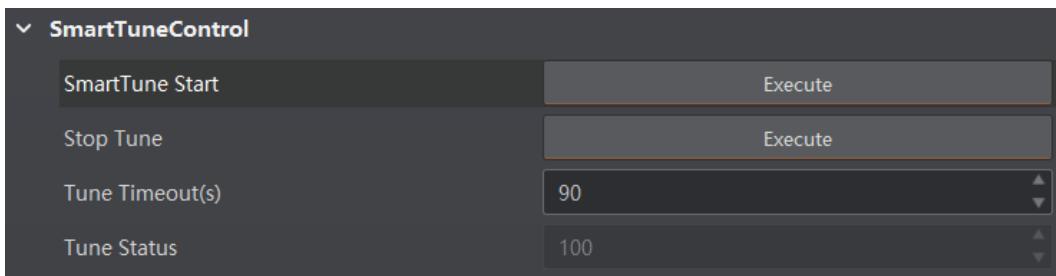
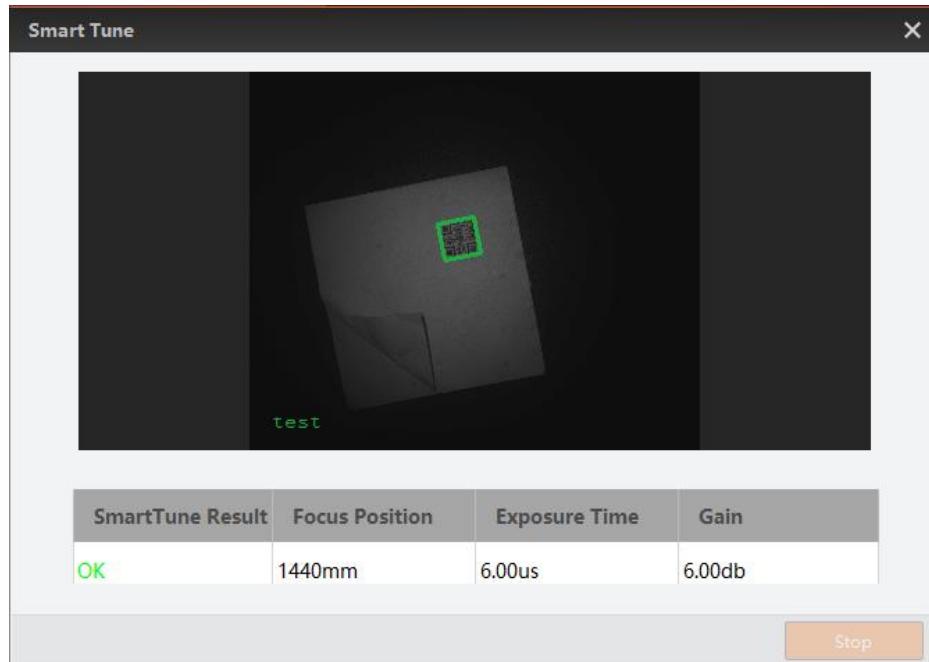




Figure 9-10 Smart Tune Control

2. (Optional) Set **Tune Timeout**. If the self-adaptive adjustment exceeds configured value, and it will stop automatically.
3. Click **Execute** in **SmartTune Start** to let the device start smart tune, and a window of smart tune will be displayed for you to view the effect.



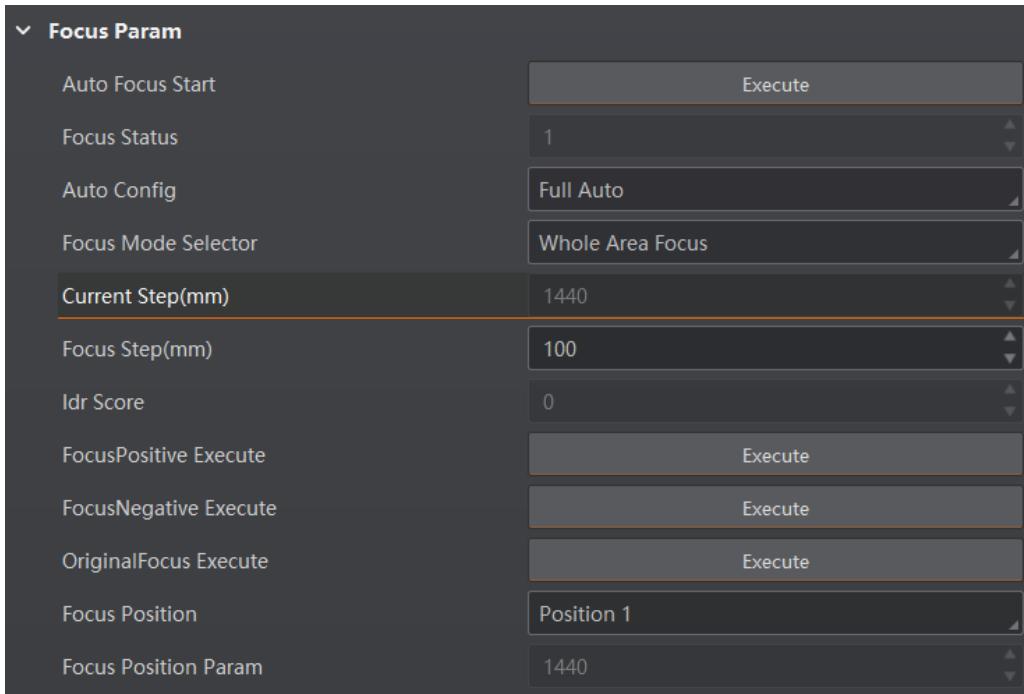
**Figure 9-11 Smart Tune Start**

4. (Optional) View smart tune process via **Tune Status**.
5. (Optional) Click **Execute** in **Stop Tune** to stop smart tune process.

### 9.2.7 Set Auto Focus

The device supports the auto focus function according to the code position in the field of view. Currently, two types of auto focus are supported, including global focus and ROI focus.




Make sure that the device's operation mode is test before performing focus, and switch to the normal operation mode after the focus is completed.

#### Global Focus

The global focus allows you to adjust lens focus in a global field of view just by once.

##### Steps

1. Go to **Image Settings** → **Focus Param** → **Focus Mode Selector**, and select **Whole Area Focus**.



**Figure 9-12 Global Focus**

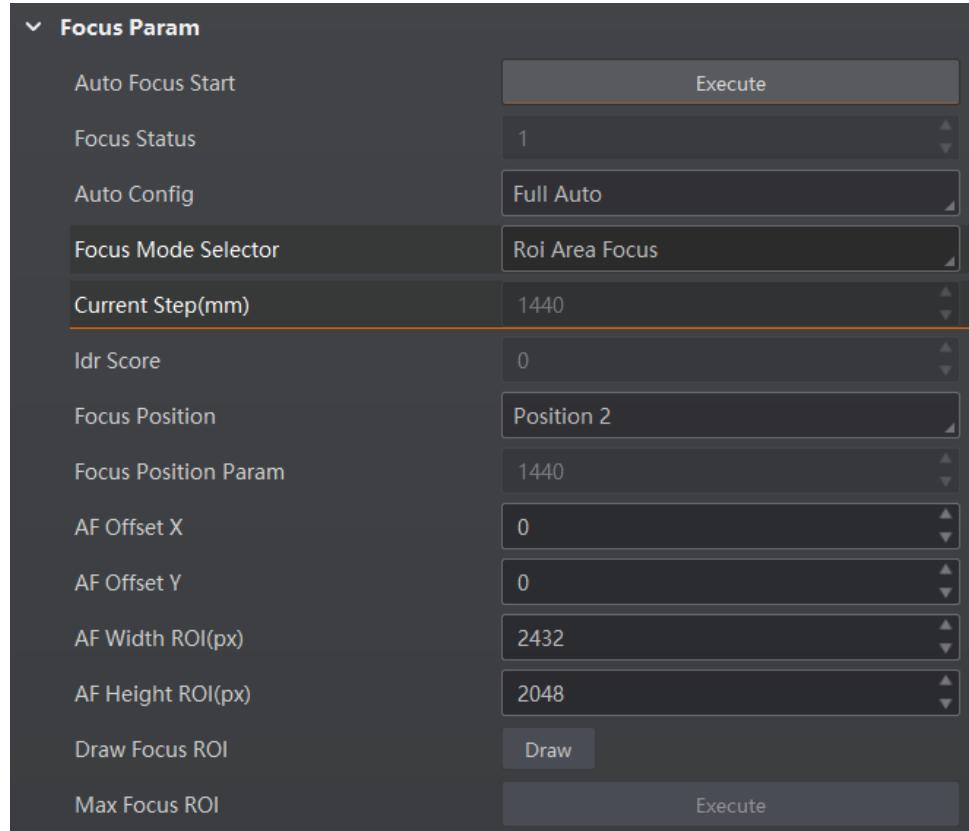
2. Click  in the live view window, and click it again to stop acquisition and make sure there is an image in the window.
3. Select the focus mode in **Auto Config**:
  - **Full Auto**: In this mode, the device will automatically change parameters like focus position, exposure, gain, Gamma and light source when adjusting focus.
  - **Motor Only**: In this mode, the device will change focus position only when adjusting focus.
  - **Auto and Restore**: In this mode, the device will automatically change parameters like focus position, exposure, gain, Gamma and light source when adjusting focus, and keep focus position and restore other parameters after completing focus adjustment.
4. Click **Execute** in **Auto Focus Start**, and the device starts to adjust focus automatically.

### **Note**

Focus-related parameters cannot be configured during auto focus process. After the auto focus is finished, parameters can be configured again.

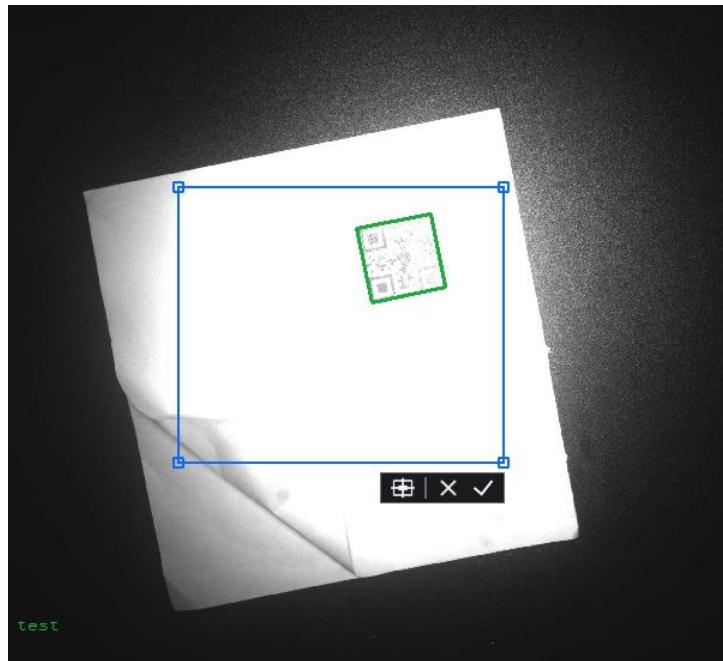
5. (Optional) Select the position parameter from **Focus Position**.
6. (Optional) View the score in **Idr Score** after the auto focus is finished.

## **ROI Focus**


The ROI focus allows you to adjust lens focus in the ROI by drawing specific area.

### **Note**

The ROI focus is applicable to the scenario where multiple codes with different depth of fields are existed.


## Steps

1. Go to **Image Settings** → **Focus Param** → **Focus Mode Selector**, and select **ROI Area Focus**.



**Figure 9-13 ROI Focus**

2. Click  in the live view window, and click it again to stop acquisition and make sure there is an image in the window.
3. Click **Draw** in **Draw Focus ROI**, and draw ROI by dragging the mouse in live view window.



**Figure 9-14 Draw Focus ROI Area**

4. (Optional) Set the following parameters to adjust ROI size and position.
  - **AF Offset X:** It is X coordinate of the upper-left corner in ROI where you execute auto focus.
  - **AF Offset Y:** It is Y coordinate of the upper-left corner in ROI where you execute auto focus.
  - **AF Width ROI(px):** It refers to the width in ROI where you execute auto focus.
  - **AF Height ROI(px):** It refers to the height in ROI where you execute auto focus.
5. (Optional) Click **Execute** in **Max. Focus ROI** to have a global focus.
6. (Optional) Repeat Step 3 if you want to set multiple ROIs.
7. Refer to Step 3 to Step 6 in global focus to set auto focus.

### 9.2.8 Set Fast Focus

The device with ToF function is able to achieve fast focus and is suitable for the scene with the focus speed requirement. In the mobile scene, the device can adjust focus in real time according to the depth of field of the object.



Only device with ToF function supports fast focus settings.

#### Steps

1. Right click the device in **Device Connection**, and click **Feature Tree**.
2. Go to **Tof Control**, and enable **Tof Enable** and **Fast Focus Enable**.
3. (Optional) Set **Tof Tolerance** and **Tof Measuring Range** according to the actual demands.
  - **Tof Tolerance:** When ToF changing range exceeds the configured value, the device will stop adjusting focus.
  - **Tof Measuring Range:** When ToF distance exceeds the configured value, the device will

stop adjusting focus.

#### 4. View current ToF distance via **ToF Distance**.

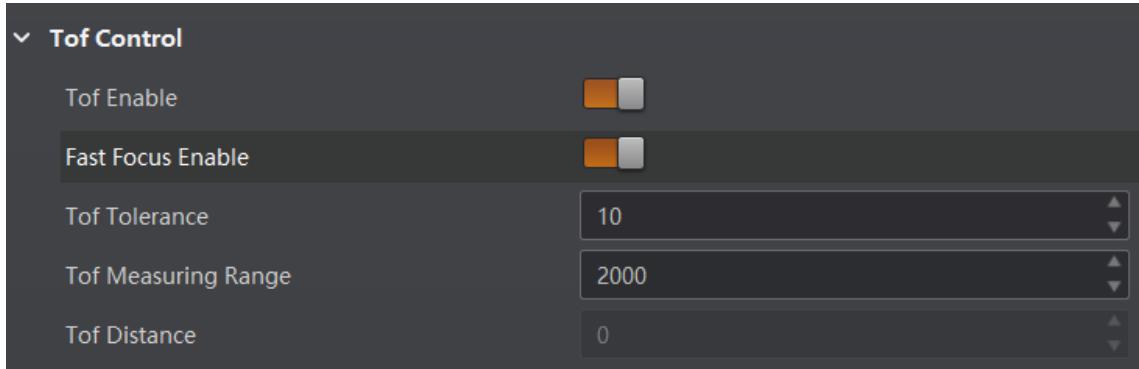



Figure 9-15 Set Fast Focus

### 9.2.9 Set Self-Adaptive Adjustment

The function of self-adaptive adjustment can automatically adjust exposure, gain, code type, light source, and other parameters to have a better code reading effect.

#### Steps

1. Go to **Image Settings** → **SelfAdapt Param**.

2. Select **Adjust Mode**.

- **Static Sense**: If you select this mode, exposure will be adjusted in priority. The acquired picture will have a smaller gain and noise, which makes a higher picture quality. It is suitable for objects with a slow moving speed.
- **Sport Sense**: If you select this mode, gain will be adjusted in priority. There may be more noise on the picture. It is suitable for objects with a fast moving speed.

2. Select **Adjust Source** according to actual demands.

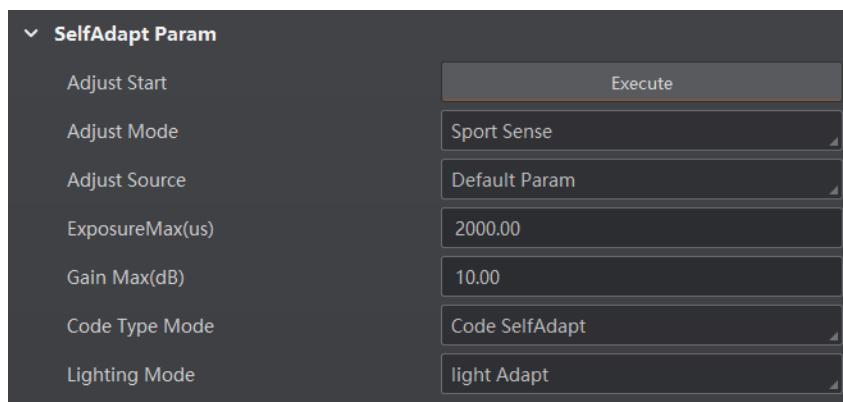
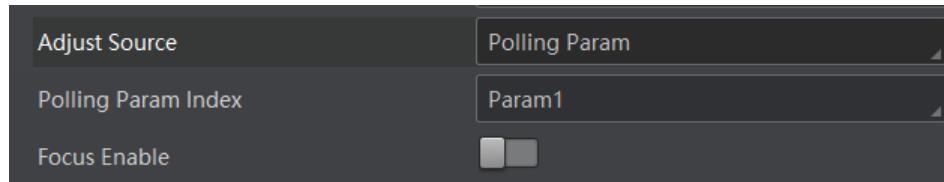




Figure 9-16 Select Adjust Source

- **Default Param**: It adjusts the default parameters.

- **Polling Param**: It adjusts parameters configured in polling. After **Polling Param** is selected as **Adjust Source**, you should select a polling parameter group from **Polling Param Index**

and enable or disable **Focus Enable**.



**Figure 9-17 Polling Parameter**

3. (Optional) Set **Exposure Max** or **Gain Max** according to actual demands.

- **Exposure Max:** It is enabled in Sport Sense, and it sets the max. exposure during the self-adaptive adjustment.
- **Gain Max:** It is enabled in Static Sense, and it sets the max. gain during the self-adaptive adjustment.

4. (Optional) Set self-adaptive code type in **Code Type Mode**.

- **Code SelfAdapt:** All code types added in field of view will be self-adaptive.
- **1D Code:** 1D code types added in field of view will be self-adaptive.
- **2D Code:** 2D code types added in field of view will be self-adaptive.
- **Stack Code:** Stacked code types added in field of view will be self-adaptive.

5. (Optional) Set light source parameters in **Lighting Mode**.

- **Light Adapt:** The client software will select the best one from all lighting options during the self-adaptive adjustment.
- **All Light Enable:** All light sources will be turned on during self-adaptive adjustment process.
- **All Light Disable:** All light sources will be turned off during self-adaptive adjustment process.
- **Current Light Adapt:** The client software will use the current configured light source.

6. Click **Execute** in **Adjust Start**. The device will automatically acquire images and perform self-adaptive adjustment, and stop acquisition after adjustment is completed.

---



#### Note

If the adjustment is completed, the time cost and other information will be shown in the history panel. If the adjustment failed or is timeout, the client software will prompt adjustment failure or timeout.

---

## 9.2.10 Set Mirror X and Mirror Y

The device supports the mirror X and mirror Y functions.

Go to **Image Settings** → **Other Features** to set **Mirror X** and **Mirror Y** according to actual

demands.

Mirror X: If the parameter is enabled, the image will be reversed in a horizontal way.

Mirror Y: If the parameter is enabled, the image will be reversed in a vertical way.

---



The **Mirror X** and **Mirror Y** are enabled by default, and it may differ by device models.

---



Figure 9-18 Set Mirror X and Mirror Y

## 9.2.11 Set Test Pattern

Test pattern helps troubleshooting image problems and images in the test pattern are only for test. When exceptions occur in images acquired by the device in real time, you can check if images in the test pattern have similar problems to determine the cause of an exception.

---



- The test pattern is available in the test or raw operation mode.
- Specific parameters of this function may differ by device models.

---

Go to **Image Settings** → **Other Features**, and set **Test Pattern** according to actual demands.

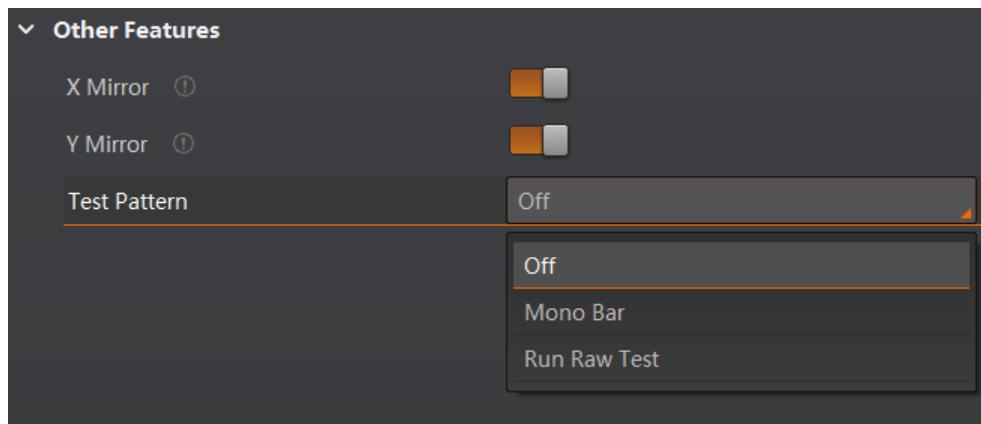



Figure 9-19 Set Test Pattern

## 9.3 Code Algorithm Settings

The code reader supports reading multiple types of 1D code, 2D code, and stacked codes, and you can add and set code parameters via the client software.

---

### 9.3.1 Add Code

Adding code before you set code parameters via the client software. In **Algorithm Settings**, you can add different types of codes according to actual demands.

In **Algorithm Settings**, you can select types of codes to be read, and set the **Number of 1D Code**, **Number of 2D Code**, or **Number of Stack Code** according to actual demands.

#### Note

- For different models of the device, the specific parameters may differ, and the actual device you purchased shall prevail.
- The number of selected symbologies and codes may affect the code recognition time. More symbologies or more codes selected may consume more time to recognize codes in the image. Please select code according to the actual demands.
- The code reader may output actual code quantity when the actual code quantity is less than the code quantity set in the client software.

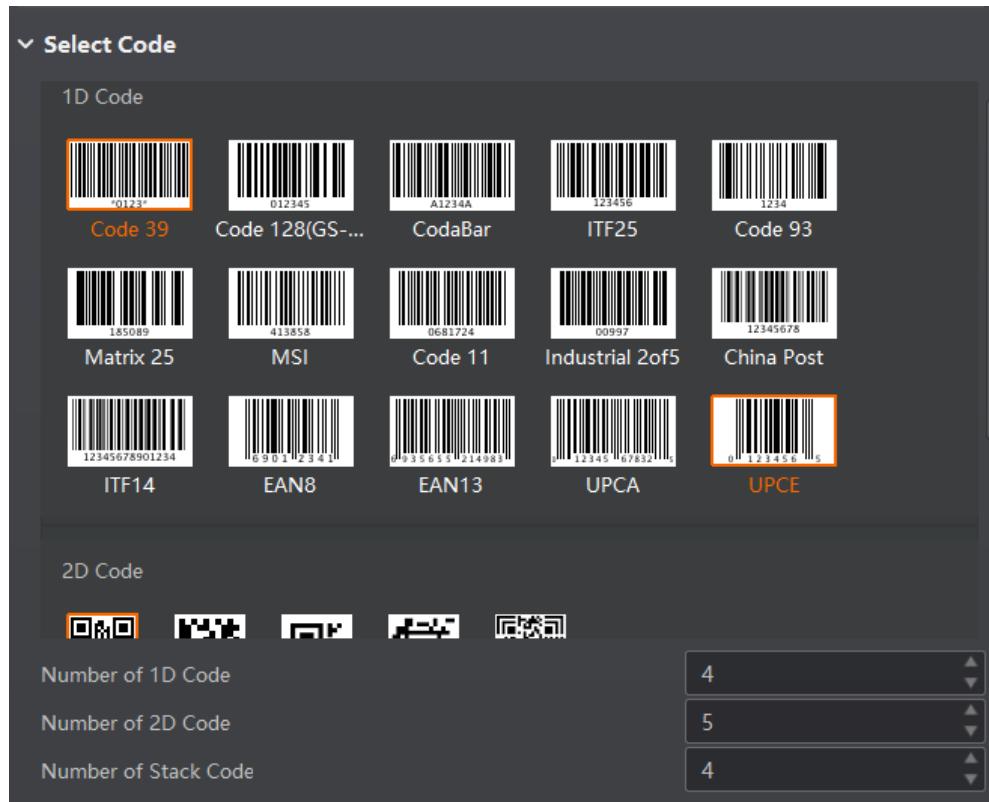



Figure 9-20 Add Codes

### 9.3.2 Set Code Reading ROI

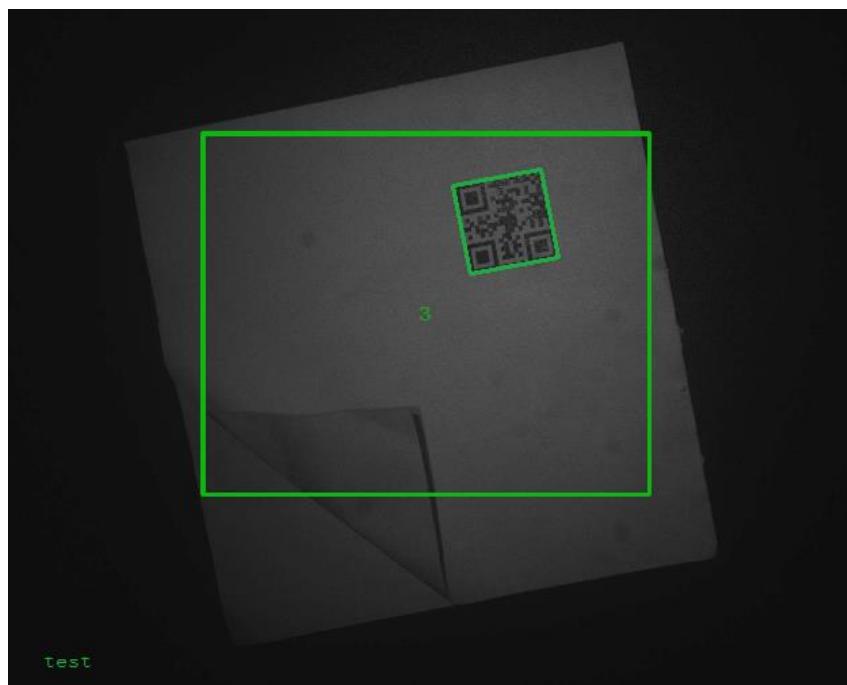
Algorithm ROI (Region of Interest) allows the device to execute algorithms and read codes on the specific area you selected, improving code reading efficiency.

Currently, multiple ROIs can be configured, and the device outputs codes according to the

ROI No. (e.g. Region 1, Region 2, and Region 3...) in turn. The client software supports drawing single group of ROI and drawing ROI via chessboard.

---

## Note


- If no code is recognized in the algorithm ROI, the device will output “noread”.
- Before drawing ROIs, make sure that there is an image in the live view window after stopping preview.
- If no algorithm ROI is enabled, and the full screen is the algorithm ROI by default.
- This function may differ by device models.

---

## Draw Single Group of ROI

### Steps

1. Go to **Algorithm Settings**, and find **Algorithm ROI**.
2. Click **Draw** in **Draw ROI** to draw the ROI in the live view window.



**Figure 9-21 Draw ROI**

3. (Optional) Repeat the above step to draw multiple ROIs according to actual demands.

---

## Note

The client software only parse codes in the ROI you drawn.

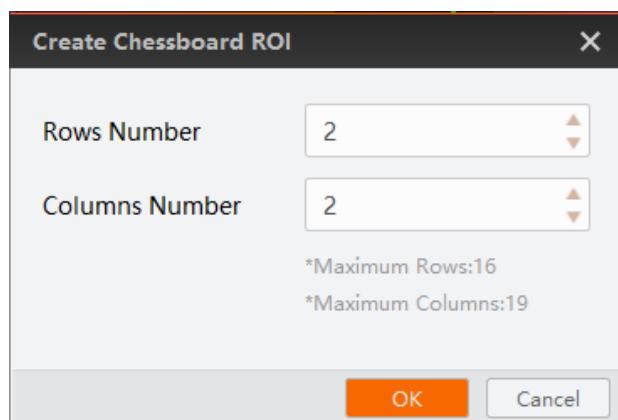
---

4. (Optional) Set other ROI-related parameters according to the actual demands.

- **ROI Index:** It indicates different ROIs and ranges from 0 to 149 corresponds 1 to 150 ROIs.
- **AlgoRegionWidth:** It refers to the width in algorithm ROI.
- **AlgoRegionHeight:** It refers to the height in algorithm ROI.

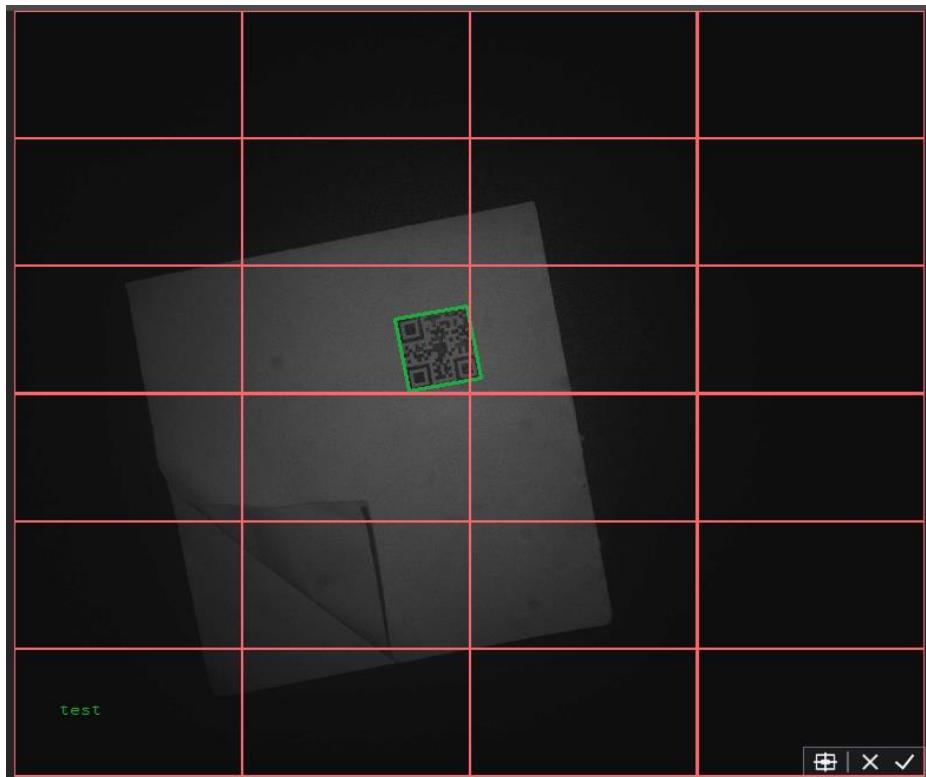
- **AlgoRegionLeftX**: It refers to the X coordinate of the upper-left corner in algorithm ROI.
- **AlgoRegionLeftY**: It refers to the Y coordinate of the upper-left corner in algorithm ROI.

|                  |     |
|------------------|-----|
| ROI Index        | 3   |
| AlgoRegionWidth  | 979 |
| AlgoRegionHeight | 792 |
| AlgoRegionLeftX  | 469 |
| AlgoRegionLeftY  | 709 |


**Figure 9-22 ROI Parameters**

5. (Optional) Click **Execute** in **Restore Max. Algorithm ROI** to restore the ROI to the full screen.
6. (Optional) Click **Execute** in **Clear All ROI** to delete all ROIs.
7. (Optional) Right-click the ROI and click **Delete** to delete the selected ROI.
8. (Optional) After you enable the **ROI Link IO Enable** in **Feature Tree** → **Trigger and IO Control**, and when the code is not read in any ROI, the linked output device will output a message.

## Draw ROI via Chessboard


### Steps

1. Go to **Algorithm Settings**, and find **Algorithm ROI**.
2. Click **Execute** in **Chessboard ROI**, set parameters, and click **OK** after setting.



**Figure 9-23 Create Chessboard ROI**

3. (Optional) Click  to restore the ROI to full screen, and click  to clear all ROIs.
4. Click  after creating ROI, and the red frame becomes green as shown below.



**Figure 9-24 Draw ROI via Chessboard**

5. Repeat other optional steps mentioned in drawing single group of ROI.

---



The figures above are for reference only. Refer to the actual conditions.

---

### 9.3.3 Set Algorithm Parameter

In **Algorithm Parameter**, select **1DCode**, **2DCode** or **StackCode** as **Arithmetic Type**, and then you can set the related parameters.

---



- You should have selected at least one type of 1D code, 2D code or stacked code.
- For different models of the device, the specific parameters may differ, and the actual device you purchased shall prevail.

---

#### Set 1D Code

##### Waiting Time

Waiting time refers to the maximum running time of algorithm, and its unit is ms. The code reader will stop parsing the images and return results if the time is exceeded the waiting time configured. When the value is set as 0, the actual running time of algorithm

will prevail.

## Code Color

It defines the readable code color. **WhiteCodeOnBlackWall** means that the client software can recognize the white code with black background. **BlackCodeOnWhiteWall** means that the client software can recognize the black code with white background. **Adaptive** means that the device can recognize both types of codes mentioned above. However, the reading time will be longer compared with the above two modes.

## Code 39 Check

Enable this parameter if Code 39 uses the parity bit.



**Note**  
You need to select **Code 39** in **Select Code**.

## ITF 25 Check

Enable this parameter if ITF 25 uses the parity bit.



**Note**  
You need to select **ITF 25** in **Select Code**.

## Code Quality Enable

If it is enabled, the client software will judge the quality of 1D code and output overall grade. Currently, this parameter is only applicable to Code 39 and Code 128.

## Code Score Enable

If it is enabled, the client software will evaluate the code reading environment for 1D code and output code score.

## Set 2D Code

### Waiting Time

Waiting time refers to the maximum running time of algorithm, and its unit is ms. The code reader will stop parsing the images and return results if the time is exceeded the waiting time configured. When the value is set as 0, the actual running time of algorithm will prevail.

### QR Distortion Correction

If the QR code or DM code is distorted, you can enable this parameter to improve code recognition rate. The parameter is disabled by default.

### DM Code Type

It includes **All**, **ECC140**, and **ECC200**.

### 2D Code Quality Enable

If it is enabled, the client software will judge the quality of 2D code and output overall grade. Currently, this parameter is only applicable to DM code and QR code.

### Code Score Enable

If it is enabled, the client software will evaluate the code reading environment for 2D code and output code score.

### Set Stacked Code

#### Waiting Time

Waiting time refers to the maximum running time of algorithm, and its unit is ms. The code reader will stop parsing the images and return results if the time is exceeded the waiting time configured. When the value is set as 0, the actual running time of algorithm will prevail.

#### Code Score Enable

If it is enabled, the client software will evaluate the code reading environment for stacked code and output code score.

### 9.3.4 Set Code Quality Evaluation

The code quality evaluation function judges the quality of codes and outputs overall grade. Currently, only 1D code and 2D code support code quality evaluation.

---

#### Note

- The function of code quality evaluation may differ by device models.
- In test operation mode, this function is enabled by default. In normal mode, you need to enable it manually.
- This function is also supported for multiple codes in the field of view.

---

### Set 1D Code Quality Evaluation

The 1D code quality evaluation function uses the ISO15416 standard to judge the quality of codes and output overall grade. Currently, this function is only applicable to Code 39 and Code 128.

#### Steps

1. Go to **Algorithm Settings** → **Algorithm Parameter**, and select **1DCode** as **Arithmetic Type**.
2. Enable **Code Quality Enable**.
3. Enable different quality evaluation standards according to actual demands.

**Table 9-7 1D Code Quality Evaluation Standards**

| Parameter    | Description                                                               |
|--------------|---------------------------------------------------------------------------|
| Decodability | It evaluates whether the code has enough basic information to be decoded. |

| Parameter             | Description                                                                                                   |
|-----------------------|---------------------------------------------------------------------------------------------------------------|
| Symbol Contrast       | It evaluates the difference between the max. brightness value and the min. brightness value of the code area. |
| Modulation            | It evaluates the degree of change in terms of brightness.                                                     |
| Edge Determination    | It evaluates how well the number of edges read by the code matches the configured number of edges.            |
| Minimum Reflectance   | It evaluates the ratio of the min. brightness value to the max. brightness value.                             |
| Minimum Edge Contrast | It evaluates the min. value of the reflectivity difference of the strip connecting the spaces.                |
| Decode Enable         | It evaluates whether the code recognition is successful or not.                                               |
| Defects               | It evaluates codes or spaces for defects or dirt.                                                             |

4. Set the evaluation value for A/B/C/D grade according to actual demands.

---



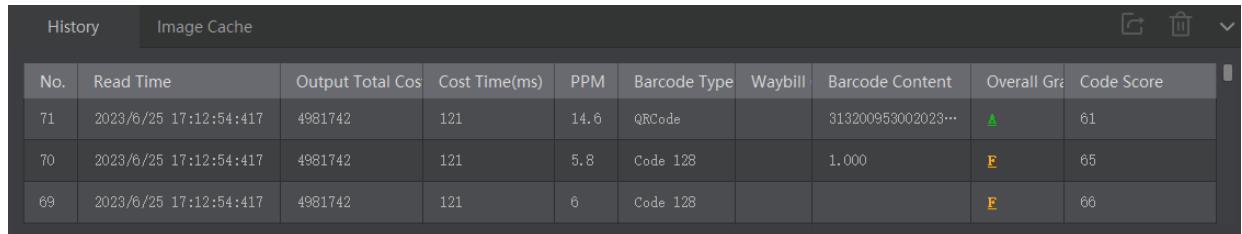
#### Note

- If the actual code reading value of the device is greater than the grade A evaluation value, the evaluation standard is grade A.
- If the actual code reading value is between grade A and grade B, the evaluation standard is grade B.
- If the actual code reading value is between grade B and grade C, the evaluation standard is grade C.
- If the actual code reading value is between grade C and grade D, the evaluation standard is grade D.
- If the actual code reading value is lower than the D grade, the evaluation standard is F grade.
- The client software selects the worst grade among all the evaluation standards as the grade judgment result of the code. The A grade means that the code quality is best, and F grade means that code quality is worst.

---

5. (Optional) Set **1D Quality Max Num** to configure the number of codes to be evaluated. If the actual number of codes exceeds the configured value, the later codes will not be evaluated.

6. (Optional) Go to **Feature Tree → Code Algorithm Params**, and select **1D Rating Standard**.


---



For example, if **1D Rating Standard** is **C**, and then the client software will output codes with A/B/C grade and codes with D/F will be filtered.

---

7. Click  to start acquisition, and the client software will display the overall code quality in the history record area.



| No. | Read Time              | Output Total Cos | Cost Time(ms) | PPM  | Barcode Type | Waybill | Barcode Content    | Overall Grade | Code Score |
|-----|------------------------|------------------|---------------|------|--------------|---------|--------------------|---------------|------------|
| 71  | 2023/6/25 17:12:54:417 | 4981742          | 121           | 14.6 | QRCode       |         | 313200953002023... | A             | 61         |
| 70  | 2023/6/25 17:12:54:417 | 4981742          | 121           | 5.8  | Code 128     |         | 1.000              | F             | 65         |
| 69  | 2023/6/25 17:12:54:417 | 4981742          | 121           | 6    | Code 128     |         | 1.000              | F             | 66         |

Figure 9-25 Overall Code Quality

## Set 2D Code Quality Evaluation

The 2D quality evaluation function uses the ISO15415 standard to judge the quality of codes and output overall grade.

### Note

- The specific parameters may differ by device models and firmware versions.
- Make sure that the device's operation mode is normal, and QR Code or Data Matrix is selected.

### Steps

1. Go to **Algorithm Settings**, and select **2DCode** as **Arithmetic Type**.
2. Enable **2D Code Quality Enable**.
3. Set the **2D Rating Standard** and enable **Quality Filter Enable**. The codes whose grades are lower than the set standard will be filtered and the codes whose grades are equal to or higher than the set standard will be output.
4. (Optional) In the **Quality2DMaxNum**, set the maximum number of codes to be evaluated. If the actual amount of codes exceeds the configured, the excess will not be evaluated.
5. Set the ISO edition and verification edition.
  - **Iso Edition**: Select the rating standard from ISO 15415 and ISO 29158. ISO 15415 is suitable for continuous code; ISO 29158 is suitable for dot code.
  - **Verify Edition**: Set the rating mode as standard mode.
6. Select the evaluation criteria based on your actual demands. If enabled, the rating standard is used to evaluate the code quality.

Table 9-8 2D Code Quality Evaluation Standards

| Parameter          | Description                                                                                    |
|--------------------|------------------------------------------------------------------------------------------------|
| TDCRDecode         | It evaluates whether the code recognition is successful or not.                                |
| TDCRSymbolContrast | It evaluates the difference between the max. brightness value and the min. brightness value of |

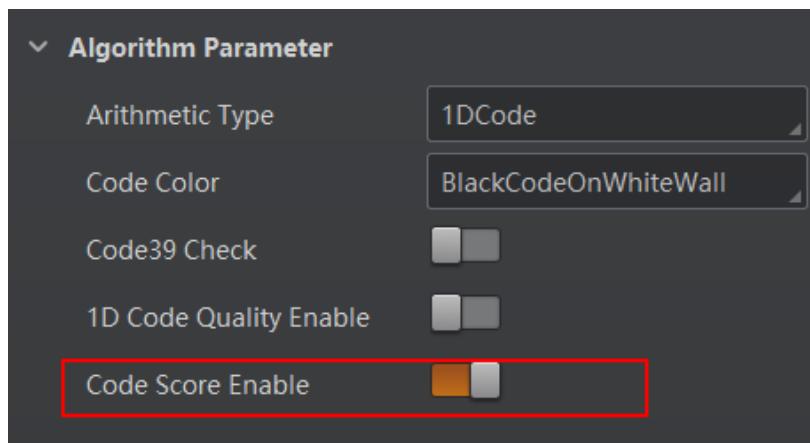
| Parameter                 | Description                                                                                                                    |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------|
|                           | the code area.                                                                                                                 |
| TDCRModulation            | It evaluates the degree of change in terms of brightness.                                                                      |
| TDCRFixedPatternDamage    | It evaluates the damage of code formats.                                                                                       |
| TDCRAxialNonuniformity    | It evaluates the distortion degree of the code's vertical and horizontal sizes.                                                |
| TDCRUnusedErrorCorrection | It evaluates the code for grid damage which might reduce the error correction capability of the code.                          |
| TDCRGridNonuniformity     | It evaluates the distortion of the grids in the code.                                                                          |
| TDCRPrintGrowth           | It evaluates whether the size of each unit of the code is uniform                                                              |
| TDCRReflectanceMargin     | It evaluates how well each unit of the code is correctly distinguished as light or dark in comparison to the global threshold. |

#### 7. Set the evaluation value for A/B/C/D grade according to actual demands.

- If the actual code reading value is greater than the grade A evaluation value, the evaluation standard is grade A.
- If the actual code reading value is between grade A and grade B, the evaluation standard is grade B.
- If the actual code reading value is between grade B and grade C, the evaluation standard is grade C.
- If the actual code reading value is between grade C and grade D, the evaluation standard is grade D.
- If the actual code reading value is lower than the grade D evaluation value, the evaluation standard is grade F.
- The client software selects the worst grade among all the evaluation standards as the grade judgment result of the code. The A grade means that the code quality is best, and F grade means that code quality is worst.

#### 9.3.5 Set Code Score

The code score function evaluates the code-reading environment for codes and outputs code score.


##### Note

- The function of code score may differ by device models.
- In test mode, this function is enabled by default. In normal mode, you need to enable it manually.

- The code score is determined by two factors including image quality and print quality of codes. The range of code score is between 0 and 100, and the higher the score, and easier the code can be read.

## Steps

1. Go to **Algorithm Settings**, and enable **Code Score Enable**.



**Figure 9-26 Enable Code Score Enable**

2. Click  to start acquisition, and the client software will display specific code score in the history record area.

| History |                        |                  |               |     |              |         |                    |                                                                                       |            |                                                                                       |
|---------|------------------------|------------------|---------------|-----|--------------|---------|--------------------|---------------------------------------------------------------------------------------|------------|---------------------------------------------------------------------------------------|
| No.     | Read Time              | Output Total Cos | Cost Time(ms) | PPM | Barcode Type | Waybill | Barcode Content    | Overall Gra                                                                           | Code Score |                                                                                       |
| 134     | 2023/6/25 17:13:38:344 | 5025673          | 107           | 15  | QRCode       |         | 313200953002023... |  | 62         |  |
| 133     | 2023/6/25 17:13:38:344 | 5025673          | 107           | 5.8 | Code 128     |         | 1.000              |  | 64         |  |
| 132     | 2023/6/25 17:13:38:344 | 5025673          | 107           | 5.9 | Code 128     |         |                    |  | 66         |  |

**Figure 9-27 Code Score**

3. (Optional) If the code score is low, go to **Image Settings**, and adjust parameters such as exposure time, gain, Gamma, and light source.

## Note

If the code score is still low after adjusting, the code may have poor printing quality.

## 9.4 Signal Input Settings

The input settings allow you to configure the trigger-related parameters. You can enable trigger mode to let the acquisition of image data occur only when the trigger source is

generated.

### 9.4.1 Set Trigger Mode

The device has 2 types of trigger mode: Internal trigger mode and external trigger mode.

- **Internal Trigger Mode:** The device acquires images via its internal signals.
- **External Trigger Mode:** The device acquires images via external signals like software signal and hardware signal. The trigger source of external trigger mode includes software, TCP, UDP, etc.

### 9.4.2 Enable Internal Trigger Mode

In internal trigger mode, the device acquires images via its internal signals. You have 2 methods to enable the internal trigger mode:

- Click **I/O Control Settings** → **Input** → **Trigger Mode**, and select **Off** as **Trigger Mode**.
- In the live view page, click  to enable the internal trigger mode.

### 9.4.3 Enable External Trigger Mode

In external trigger mode, the device acquires images via external signals like software signal and hardware signal. You have 2 methods to enable the external trigger mode:

- Click **I/O Control Settings** → **Input** → **Trigger Mode**, and select **On** as **Trigger Mode**.
- In the live view page, click  to enable the external trigger mode.

## Set and Execute Software Trigger Mode

In software trigger, the software sends trigger signal to the device to acquire images.

### Steps

1. Go to **I/O Control Settings** → **Input** → **Trigger Mode**.
2. Select **On** as **Trigger Mode**.
3. Select **Software** as **Trigger Source**.
4. Click **Execute** in **Trigger Software** to send trigger commands.
5. (Optional) Enter **Auto Trigger Time**, and enable **Enable Auto Trigger** to let the client software automatically send trigger signal to device according to the interval you set.

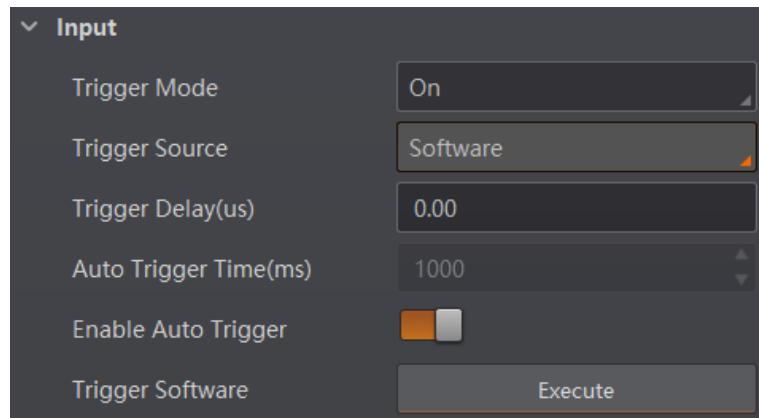



Figure 9-28 Set and Execute Software Trigger Mode

## Set and Execute Hardware Trigger Mode

### Steps

1. Go to **I/O Control Settings** → **Input** → **Trigger Mode**.
2. Select **On** as **Trigger Mode**.
3. Select the specific line as **Trigger Source** according to the actual demands.
4. Set **Debounce Time** and **Trigger Activation** according to the actual demands.

### Note

- When selecting **Rising Edge** or **Falling Edge** as **Trigger Activation**, you can set **Trigger Delay**.
- When selecting **Level High** or **Level Low** as **Trigger Activation**, you can set **Start Delay Time** and **End Delay Time**.

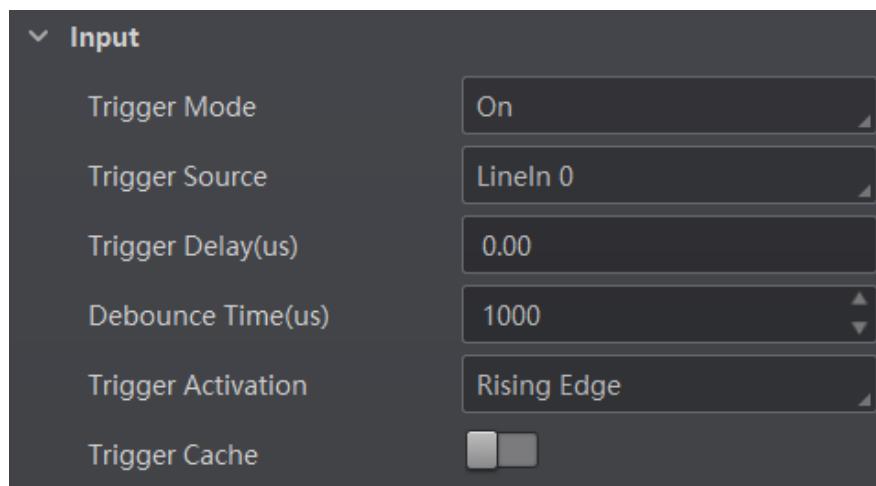
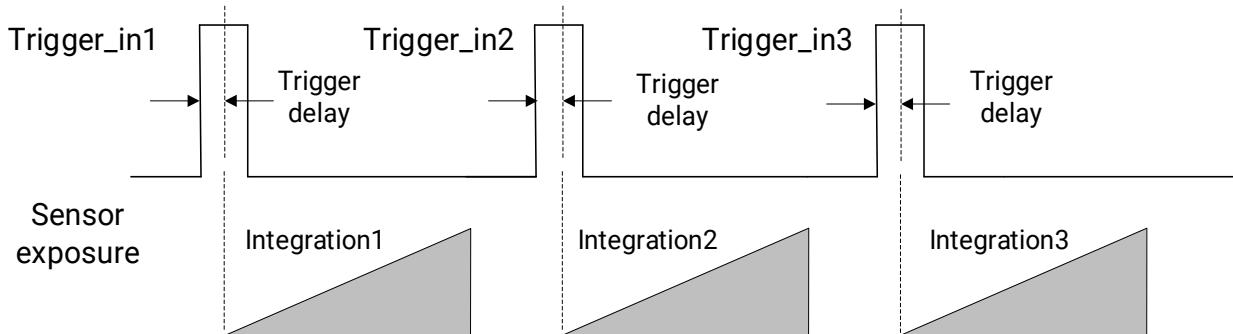
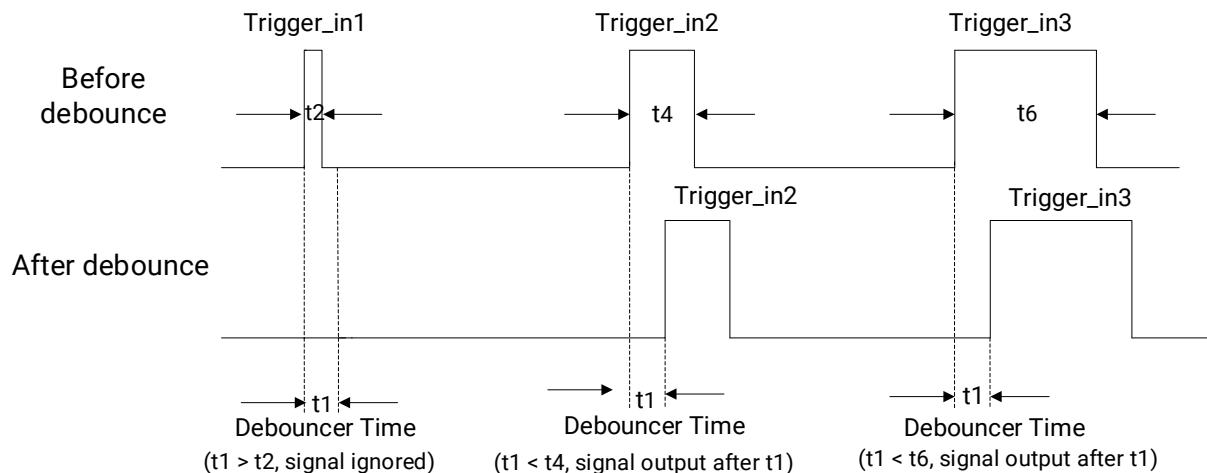




Figure 9-29 Set and Execute Hardware Trigger Mode


## Note

- **Trigger delay:** The trigger delay function allows the device to add a delay between the receipt of trigger signal and the moment the trigger becomes active. It is 0 by default and the unit is  $\mu\text{s}$ . The sequence diagram of trigger delay is shown below.



**Figure 9-30 Sequence Diagram of Trigger Delay**

- **Trigger debounce:** The trigger debounce function allows the device to filter out unwanted short external trigger signal that is input to the device. The sequence diagram of trigger delay is shown below.



**Figure 9-31 Sequence Diagram of Trigger Debounce**

---

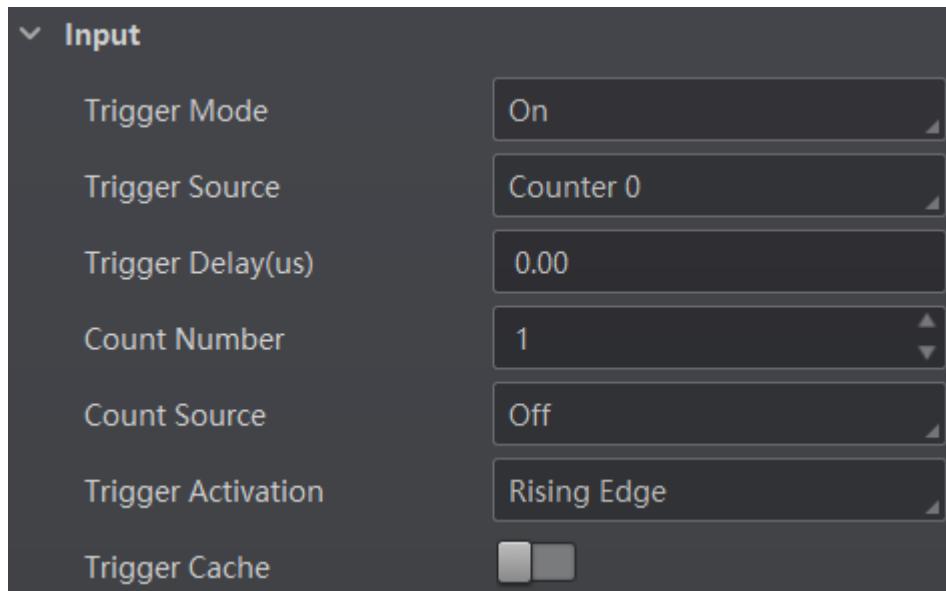
## Set and Execute Counter Trigger Mode

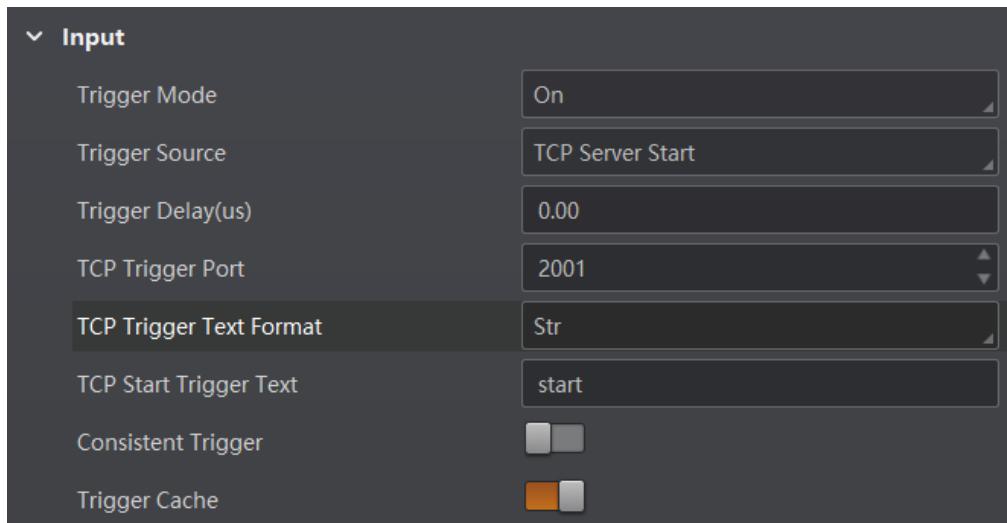
Counter specifies that the trigger source will be generated after the set number of valid signals appears. For example, if you set the **Count Number** to **3**, the trigger source will be generated after 3 signals appear.

### Steps

1. Go to **I/O Control Settings** → **Input** → **Trigger Mode**.
2. Select **On** as **Trigger Mode**.

3. Select **Counter 0** as **Trigger Source**.
4. Set **Trigger Delay**, **Count Number**, **Count Source**, and **Trigger Activation**





Figure 9-32 Set and Execute Counter Trigger Mode

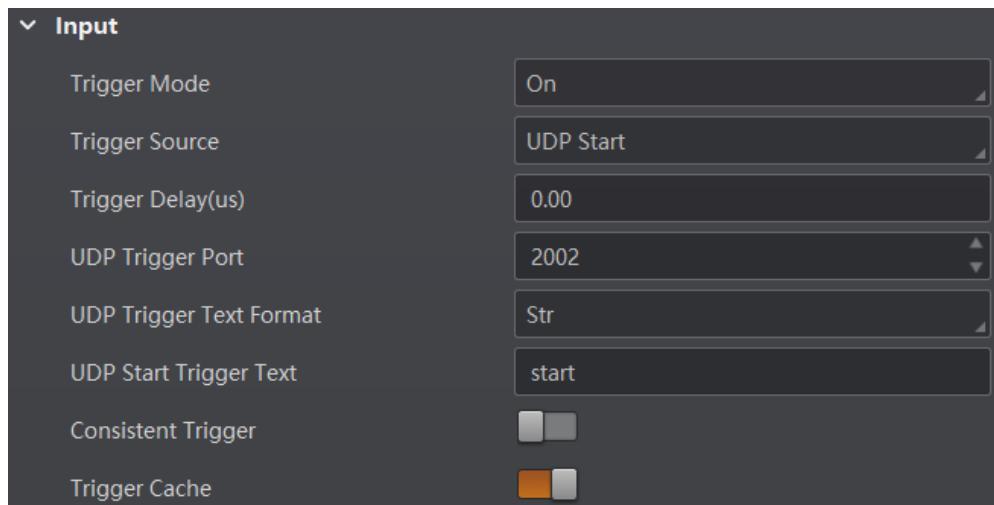
## Set and Execute TCP Trigger Mode

TCP start specifies the TCP server as the source for the trigger signal. When the server receives the specified string text, the trigger signal will be output.

### Steps

1. Go to **I/O Control Settings** → **Input** → **Trigger Mode**.
2. Select **On** as **Trigger Mode**.
3. Select **TCP Start** as **Trigger Source**.
4. Set **Trigger Delay**, **TCP Trigger Port**, **TCP Trigger Text Format**, and **TCP Start Trigger Text**, and enable **Consistent Trigger** according to the actual demands.




**Figure 9-33 Set and Execute TCP Trigger Mode**

## Set and Execute UDP Trigger Mode

UDP start specifies the UDP server as the source for the trigger signal. When the server receives the specified string text, the trigger signal will be output.

### Steps

1. Go to **I/O Control Settings** → **Input** → **Trigger Mode**.
2. Select **On** as **Trigger Mode**.
3. Select **UDP Start** as **Trigger Source**.
4. Set **Trigger Delay**, **UDP Trigger Port**, **UDP Trigger Text Format**, and **UDP Start Trigger Text**, and enable **Consistent Trigger** according to the actual demands.



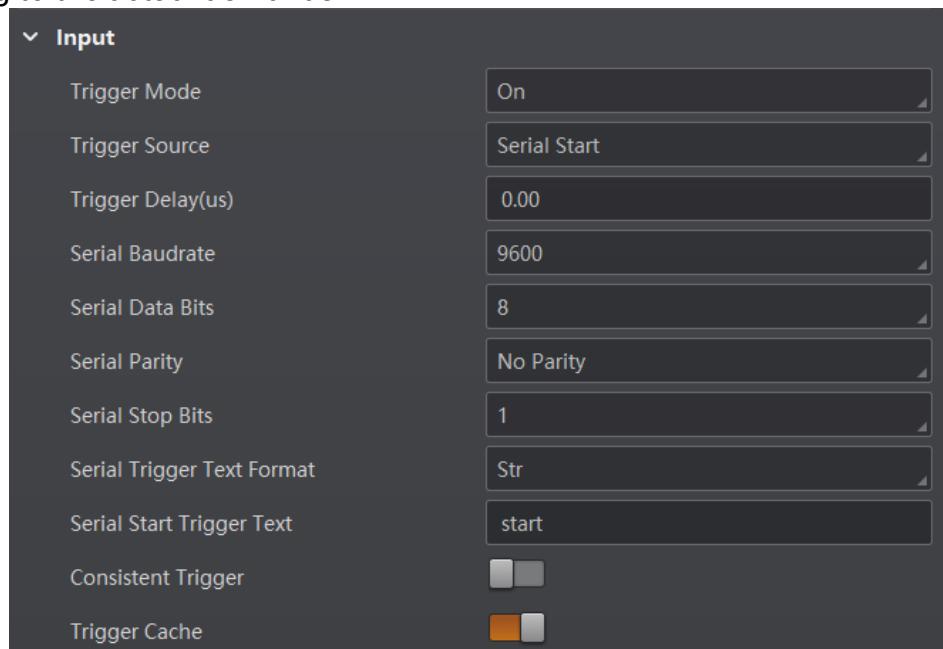
**Figure 9-34 Set and Execute UDP Trigger Mode**

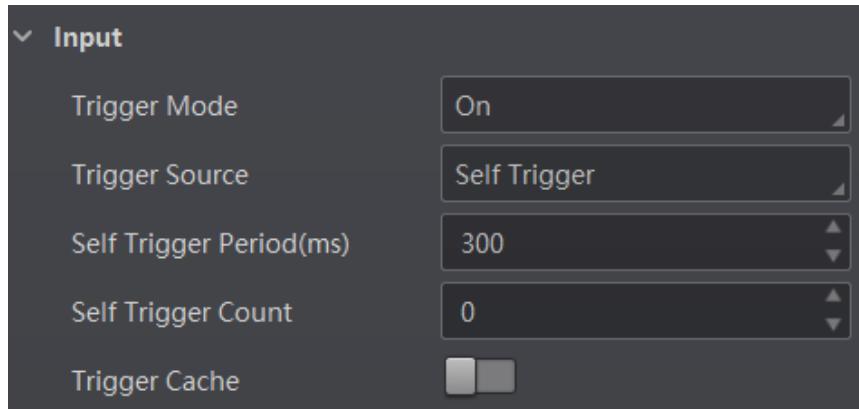
## Set and Execute Serial Port Trigger Mode

Serial start specifies the serial port as the source for the trigger signal. When the serial port receives the specified string text, the trigger signal will be output.

### Steps

1. Go to **I/O Control Settings** → **Input** → **Trigger Mode**.
2. Select **On** as **Trigger Mode**.
3. Select **Serial Start** as **Trigger Source**.
4. Set **Trigger Delay**, **Serial Baudrate**, **Serial Data Bits**, **Serial Parity**, **Serial Stop Bits**, **Serial Trigger Text Format**, and **Serial Start Trigger Text**, and enable **Consistent Trigger** according to the actual demands.





Figure 9-35 Set and Execute Serial Port Trigger Mode

## Set and Execute Self Trigger Mode

Self trigger allows you to trigger the device according to the trigger period you configured.

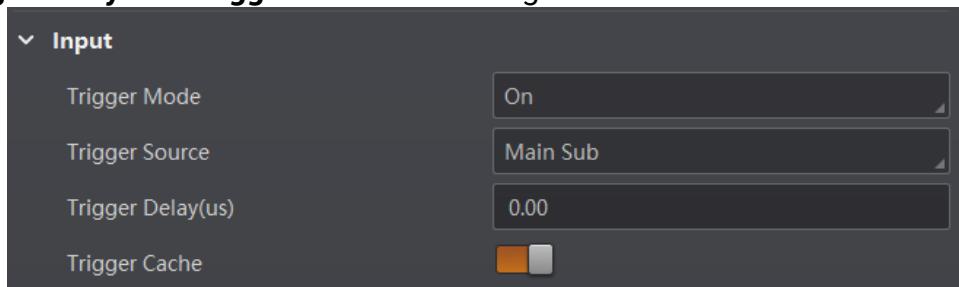
### Steps

1. Click **I/O Control Settings** → **Input** → **Trigger Mode**.
2. Select **On** as **Trigger Mode**.
3. Select **Self Trigger** as **Trigger Source**.
4. Set **Self Trigger Period** and **Self Trigger Count** according to the actual demands.



**Figure 9-36 Set and Execute Self Trigger Mode**

### **Note**


- If the self-trigger count is set to 0, and it means that it can be triggered indefinitely until the execution of self-trigger stops.
- The self-trigger time shall be set to be greater than the reciprocal of the actual frame rate.

## **Set and Execute Main Sub Mode**

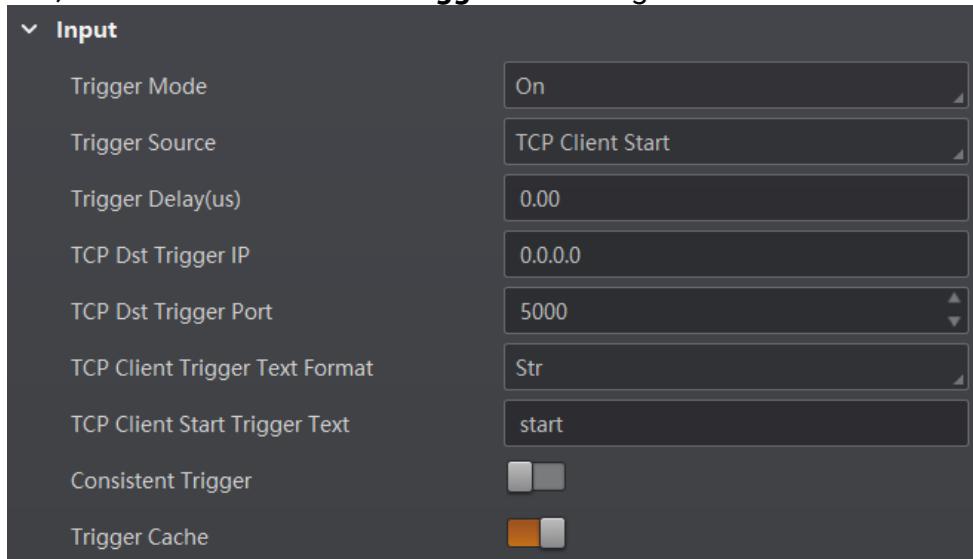
When the main code reader is triggered, the trigger signals will be sent to the sub code readers.

### **Steps**

1. Click **I/O Control Settings** → **Input** → **Trigger Mode**.
2. Select **On** as **Trigger Mode**.
3. Select **Main Sub** as **Trigger Source**.
4. Set **Trigger Delay** and **Trigger Cache** according to the actual demands.



**Figure 9-37 Set and Execute Main Sub Mode**


## **Set and Execute TCP Client Start Mode**

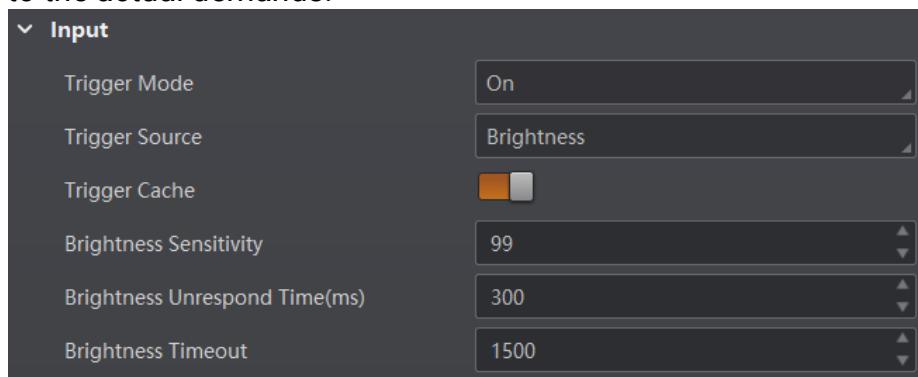
The external device sends TCP commands as the TCP client to the code reader to acquire images.

### **Steps**

1. Click **I/O Control Settings** → **Input** → **Trigger Mode**.

2. Select **On** as **Trigger Mode**.
3. Select **TCP Client Start** as **Trigger Source**.
4. Set **TCP Dst Trigger IP/Port**, **TCP Client Trigger Text Format**, and **TCP Client Start Trigger Text**, and enable **Consistent Trigger** according to the actual demands.




**Figure 9-38 Set and Execute TCP Client Start Mode**

## Set and Execute Brightness Mode

When the brightness of the field of view changes, the code reader is triggered to acquire images and output code information automatically. The code reader monitors the change of image brightness value in real time and starts code reading when the change exceeds the configured sensitivity threshold.

### Steps

1. Click **I/O Control Settings** → **Input** → **Trigger Mode**.
2. Select **On** as **Trigger Mode**.
3. Select **Brightness** as **Trigger Source**.
4. Set **Brightness Sensitivity**, **Brightness Unrespond Time**, and **Brightness Timeout**, according to the actual demands.



**Figure 9-39 Set and Execute Brightness Mode**

## Set and Execute TOF Mode

When the changes of the distance between the code reader and the object exceeds the set threshold, the code reader is triggered to acquire images.



This function is used for fast focus. Refer to section [Set Fast Focus](#) for details.

### Steps

1. Click **I/O Control Settings** → **Input** → **Trigger Mode**.
2. Select **On** as **Trigger Mode**.
3. Select **TOF** as **Trigger Source**.
4. Enable **Trigger Cache** according to the actual demands.

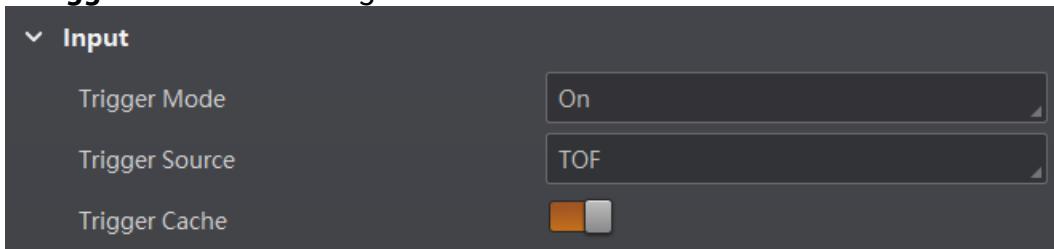



Figure 9-40 Set and Execute TOF Mode



Refer to the *IDMVS Client Software User Manual* for the details of all input parameters.

## 9.4.4 Stop Trigger

The device supports stopping trigger via TCP server, TCP client, UDP, IO, and serial port. You can also set code reading timeout duration or max. code amount to be read to stop trigger. After a trigger is stopped, the device will not respond to the trigger again.



For specific trigger stopping methods, refer to the actual device you got.

### Stop Trigger via TCP Sever

When the TCP server receives the specified string text, the trigger will be stopped.

### Steps

1. Go to **I/O Control Settings** → **Stop Trigger**.
2. Enable **TCP Stop Trigger Enable**.
3. Set following parameters according to actual demands.
  - **TCP Trigger Port**: It is 2001 by default.

- **TCP End Trigger Format:** You can select the text format from the drop-down list, including **Str** and **Hex**.
- **TCP Stop Trigger Text:** It sets the stop trigger text, and it is **stop** by default.

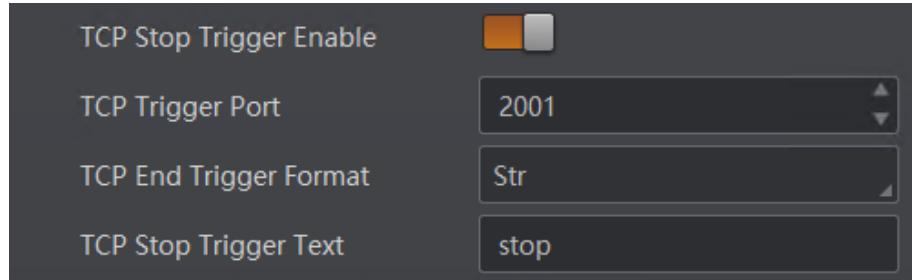



Figure 9-41 Stop Trigger via TCP Server

## Stop Trigger via TCP Client

When the TCP client receives the specified string text, the trigger will be stopped.

### Steps

1. Go to **I/O Control Settings** → **Stop Trigger**.
2. Enable **TCP Client End Trigger Enable**.
3. Set **Tcp Dst Trigger IP**, **Tcp Client Trigger Port**, **Tcp Client End Trigger Format**, and **Tcp Client Stop Trigger Text** according to actual demands.

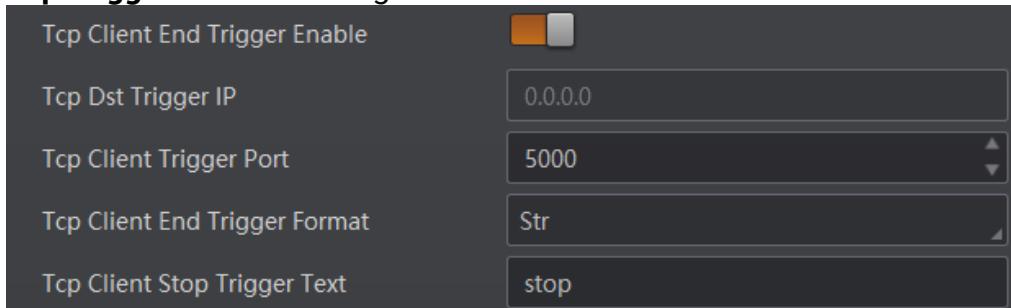



Figure 9-42 Stop Trigger via TCP Client

## Stop Trigger via UDP

When the UDP receives the specified string text, the trigger will be stopped.

### Steps

1. Go to **I/O Control Settings** → **Stop Trigger**.
2. Enable **UDP Stop Trigger Enable**.
3. Set following parameters according to actual demands.
  - **UDP Trigger Port:** It is 2002 by default.
  - **UDP End Trigger Format:** You can select the text format from the drop-down list, including **Str** and **Hex**.
  - **UDP Stop Trigger Text:** It sets the stop trigger text, and it is **stop** by default.

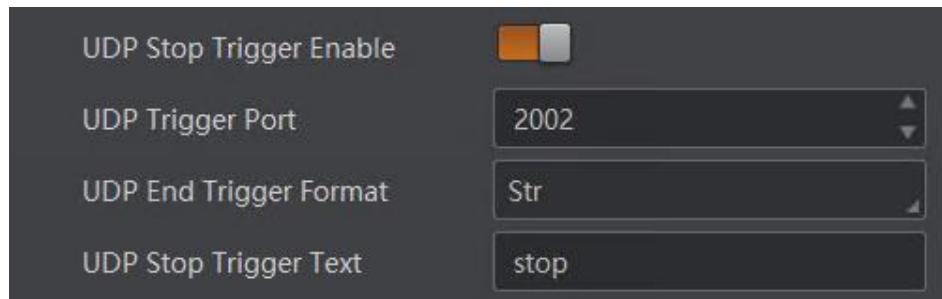



Figure 9-43 Stop Trigger via UDP

## Stop Trigger via IO

Stopping trigger via IO allows you to select hardware or software trigger source to stop the device from acquiring images.

### Steps

1. Go to **I/O Control Settings** → **Stop Trigger**.
2. Enable **IO Stop Trigger Enable**.
3. Select sources from **LineIn 0/1/2** and **Software Trigger End** as **IO Stop Trigger Selector**.
4. (Optional) Set trigger polarity if **LineIn 0/1/2** is selected as **IO Stop Trigger Selector**.
5. (Optional) Click **Execute** in **Software Stop Trigger** to stop trigger if **SoftwareTriggerEnd** is selected as **IO Stop Trigger Selector**.

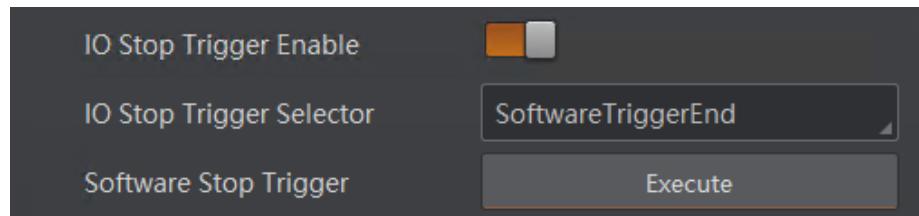



Figure 9-44 Stop Trigger via IO

## Stop Trigger via Serial Port

When the specified serial port receives the specified string text, the trigger will be stopped.

### Steps

1. Go to **I/O Control Settings** → **Stop Trigger**.
2. Enable **Serial Stop Trigger Enable**.
3. Set following parameters according to actual demands.
  - **Serial End Trigger Format**: You can select the text format from the drop-down list, including **Str** and **Hex**.
  - **Serial Stop Trigger Text**: It sets the trigger text of serial port stop, and it is **stop** by default.
  - **Serial Baudrate**: It sets the baud rate of the serial port, and it is 9600 by default.
  - **Serial Data Bits**: It sets the data bits of the serial port, and it is 8 by default.
  - **Serial Parity**: It sets the parity of the serial port, and it is **No Parity** by default.

- **Serial Stop Bits:** It sets the stop bits of the serial port, and it is 1 by default.

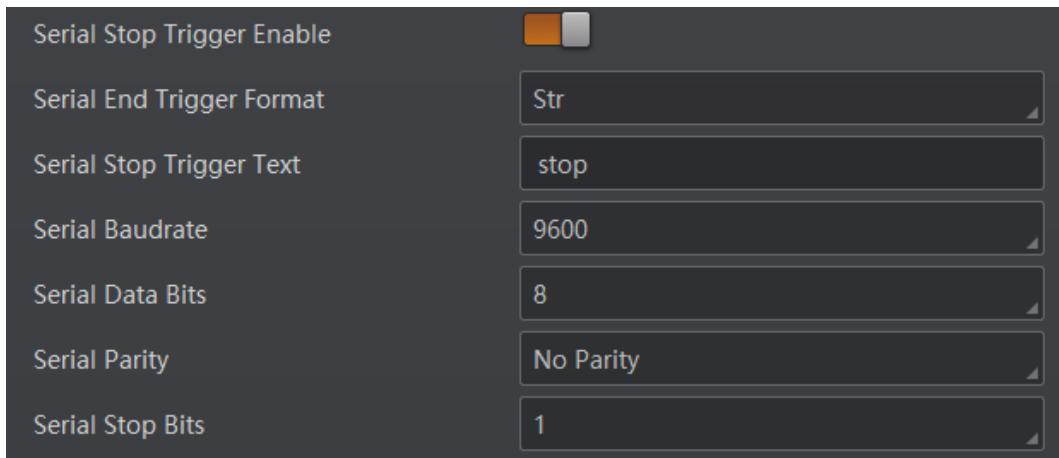



Figure 9-45 Stop Trigger via Serial Port

## Stop Trigger via Timeout Duration



**TimeOut Stop Trigger Enable** is only available when the device operation mode is set to Normal and the Trigger Mode is On.

When the trigger time reaches the specified maximum value (ms), the trigger will be stopped. You can enable **TimeOut Stop Trigger Enable**, and set **Maximum Output Limited Time** according to actual demands.



The range of **Maximum Output Limited Time** is between 0 ms and 10000 ms.

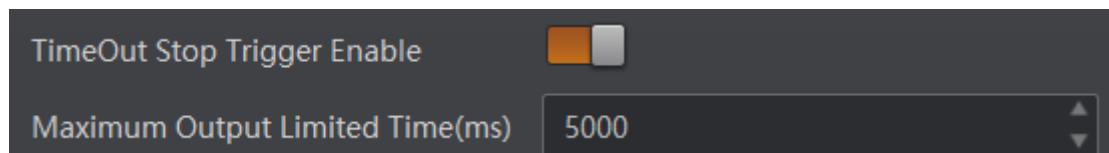



Figure 9-46 Stop Trigger via Timeout Duration

## Stop Trigger via Code Number



**CodeNum Stop Trigger Enable** is only available when the device operation mode is set to Normal and the Trigger Mode is On.

This function means that the code quantity output by the device is restricted to the settings

you configured here.

You can enable **CodeNum Stop Trigger Enable**, and set **CodeNum Stop Trigger Min** and **CodeNum Stop Trigger Max** according to actual demands.

---

 **Note**

- If the output code quantity is smaller than configured **CodeNum Stop Trigger Min**, and the device will output codes continuously.
- If the output code quantity is smaller than configured **CodeNum Stop Trigger Max**, and the device will stop outputting codes.
- If the output code quantity is between configured **CodeNum Stop Trigger Min** and **CodeNum Stop Trigger Max**, and the device will read and output codes according to trigger signals.
- If **CodeNum Stop Trigger Min** is same with **CodeNum Stop Trigger Max**, and the device will stop outputting codes when the number of output codes reaches the configured number.

---



Figure 9-47 Stop Trigger via Code Number

## 9.5 Signal Output Settings

### 9.5.1 Select Output Signal

The device's output signal can control external devices like PLC, flashing light, etc. Click **I/O Control Settings** → **Output** → **Line Out Selector** to select output signals.

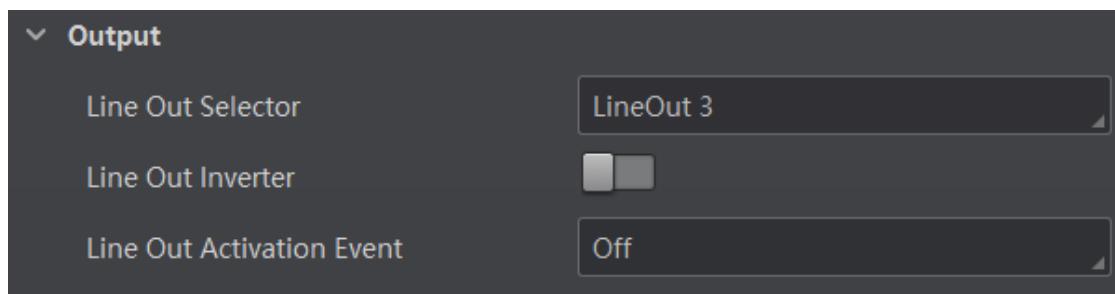



Figure 9-48 Select Output Signal

## 9.5.2 Set Event Source



The specific event sources may differ by device models and firmware versions.

The device supports outputting different trigger signals according to the event source you select. Click **I/O Control Settings** → **Output** → **Line Out Activation Event** to select event source.

The device supports following event sources: **Off**, **AcquisitionStartActive**, **AcquisitionStopActive**, **FrameBurstStartActive**, **FrameBurstStopActive**, **ExposureStartActive**, **SoftTriggerActive**, **HardTriggerActive**, **CounterActive**, **TimerActive**, **NoCodeRead**, **ReadSuccess**, **LightStrobeLong**, and **CommandControlIO**.



- **Off** refers to no event source.
- You need to set different parameters when selecting various event sources.

### Select Acquisition Start Active

If you select **AcquisitionStartActive** as **Line Out Activation Event**, and you can set its output delay time and duration.

- **Line Out Delay Time**: It sets the delay time for outputting the output signal.
- **Line Out Duration**: It sets the time duration of the output signal.

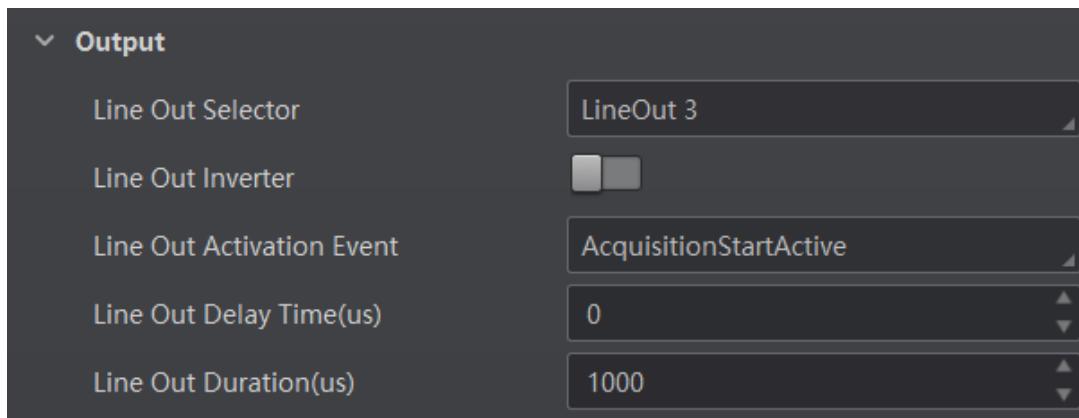



Figure 9-49 Select Acquisition Start Active

### Select Acquisition Stop Active

If you select **AcquisitionStopActive** as **Line Out Activation Event**, and you can set its output delay time and duration.

- **Line Out Delay Time**: It sets the delay time for outputting the output signal.
- **Line Out Duration**: It sets the time duration of the output signal.

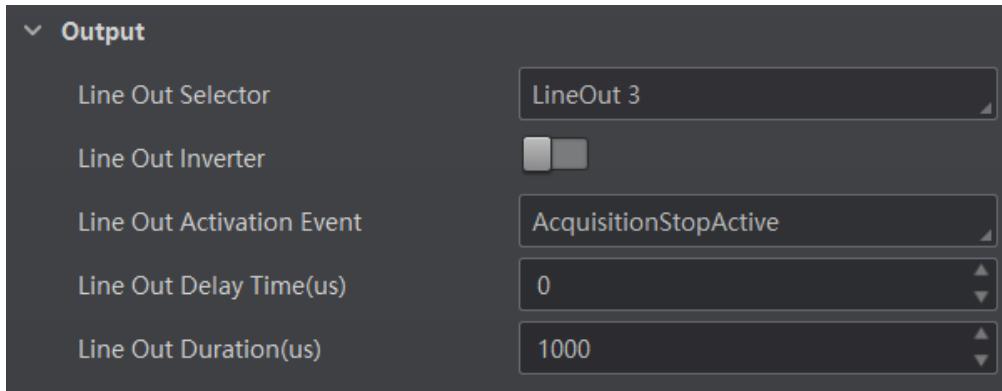



Figure 9-50 Select Acquisition Stop Active

## Select Frame Burst Start Active

If you select **FrameBurstStartActive** as **Line Out Activation Event**, and you can set its output delay time and duration.

- **Line Out Delay Time:** It sets the delay time for outputting the output signal.
- **Line Out Duration:** It sets the time duration of the output signal.

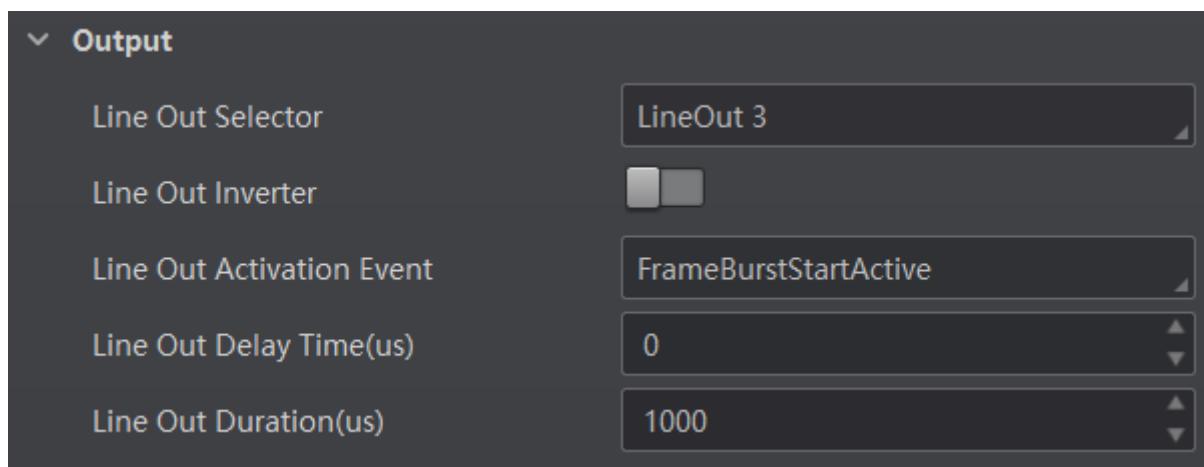



Figure 9-51 Select Frame Burst Start Active

## Select Frame Burst Stop Active

If you select **FrameBurstStopActive** as **Line Out Activation Event**, and you can set its output delay time and duration.

- **Line Out Delay Time:** It sets the delay time for outputting the output signal.
- **Line Out Duration:** It sets the time duration of the output signal.

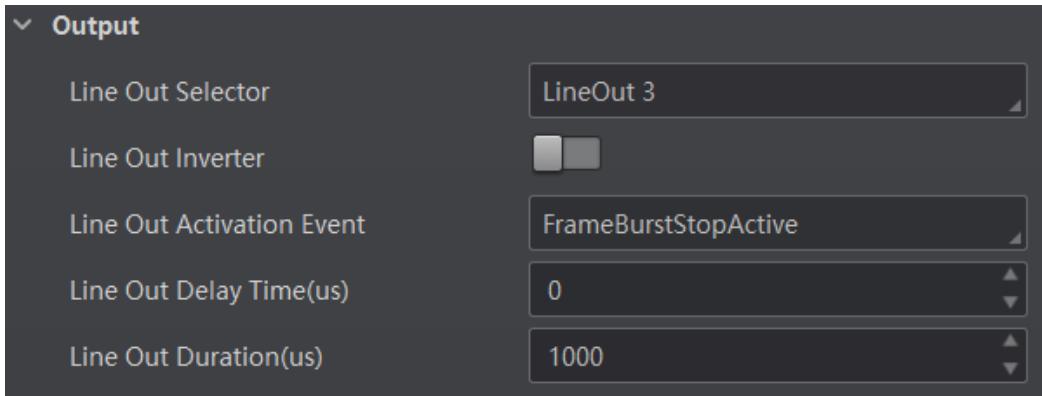



Figure 9-52 Select Frame Burst Stop Active

## Select Exposure Start Active

If you select **ExposureStartActive** as **Line Out Activation Event**, and you can set its output delay time, duration and advance time.

- **Line Out Delay Time**: It sets the delay time for outputting the output signal.
- **Line Out Duration Time**: It sets the time duration of the output signal.
- **LineOut Ahead Time**: It sets the advance time of outputting the output signal.

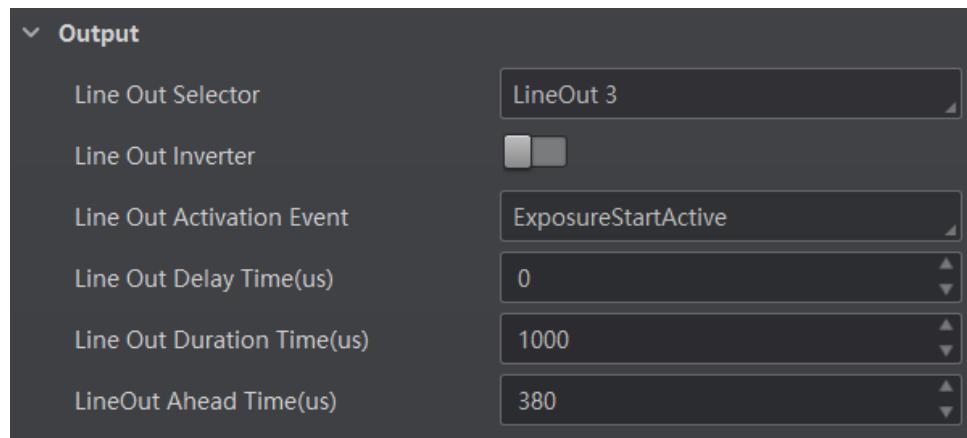
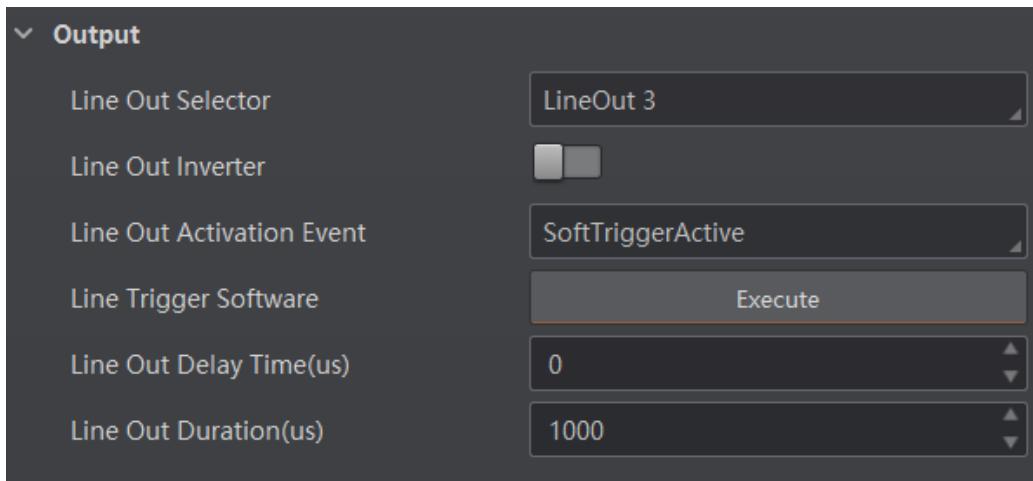
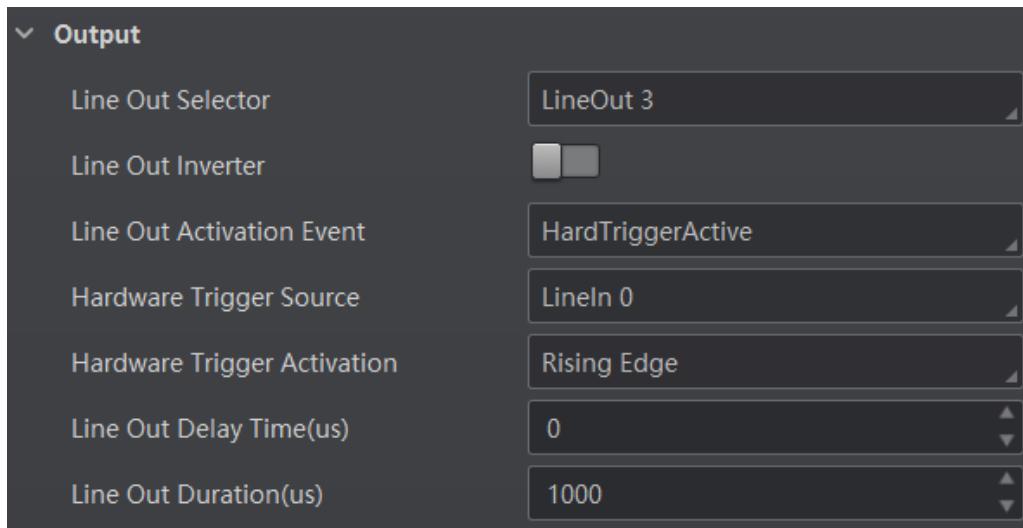




Figure 9-53 Select Exposure Start Active

## Select Soft Trigger Active

If you select **SoftTriggerActive** as **Line Out Activation Event**, and you can set its output delay time, duration, and execute outputting signal manually.

- **Line Trigger Software**: Click **Execute** in **Line Trigger Software** to output the signal manually.
- **Line Out Delay Time**: It sets the delay time for outputting the output signal.
- **Line Out Duration**: It sets the time duration of the output signal.




**Figure 9-54 Select Soft Trigger Active**

## Select Hard Trigger Active

If you select **HardTriggerActive** as **Line Out Activation Event**, and you can set its output delay time, duration, trigger source, and trigger activation.

- **Hardware Trigger Source:** It sets the hardware trigger source.
- **Hardware Trigger Activation:** It sets the trigger activation of input signal, including **Rising Edge** and **Falling Edge**.
- **Line Out Delay Time:** It sets the delay time for outputting the output signal.
- **Line Out Duration:** It sets the time duration of the output signal.



**Figure 9-55 Select Hard Trigger Active**

## Select Counter Active

If you select **CounterActive** as **Line Out Activation Event**, and you can set its output delay

time and duration.

- **Line Out Delay Time:** It sets the delay time for outputting the output signal.
- **Line Out Duration:** It sets the time duration of the output signal.

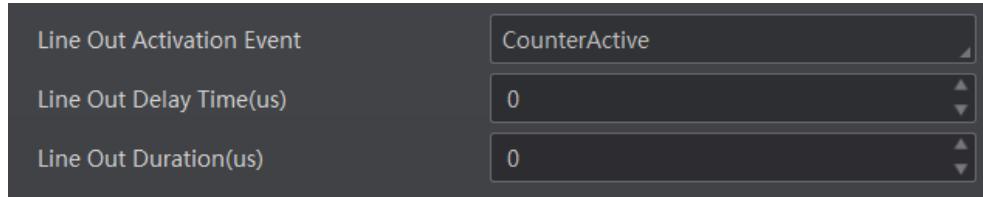



Figure 9-56 Select Counter Active

## Select Timer Active

If you select **TimerActive** as **Line Out Activation Event**, and you can set its output duration and period.

- **Line Out Duration:** It sets the time duration of the output signal.
- **Line Out Period:** It sets the time period of the output signal.

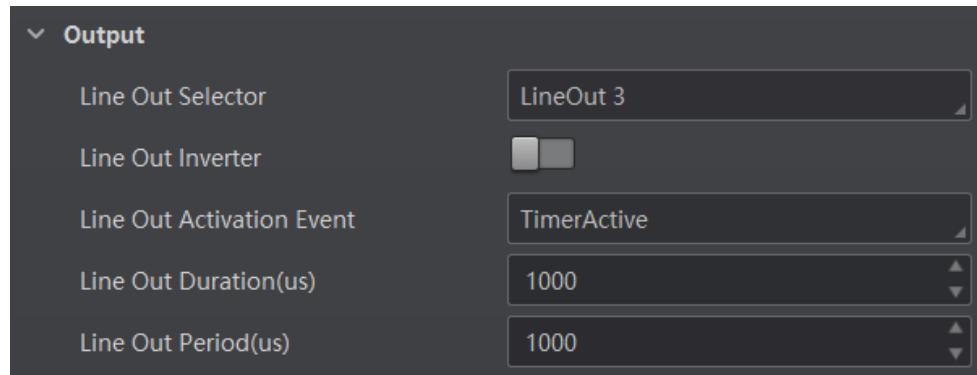



Figure 9-57 Select Timer Active

## Select No Code Read

If you select **NoCodeRead** as **Line Out Activation Event**, and you can set its output delay time and duration.

- **Line Out Delay Time:** It sets the delay time for outputting the output signal.
- **Line Out Duration:** It sets the time duration of the output signal.

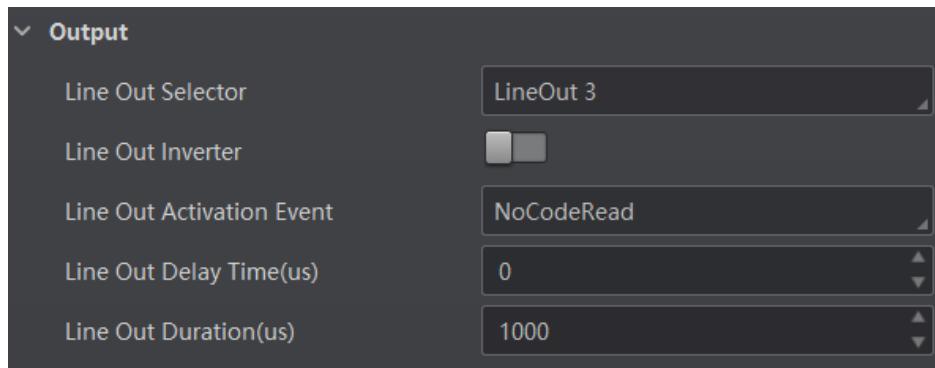



Figure 9-58 Select No Code Read

## Select Read Success

If you select **ReadSuccess** as **Line Out Activation Event**, and you can set its output delay time and duration.

- **Line Out Delay Time:** It sets the delay time for outputting the output signal.
- **Line Out Duration:** It sets the time duration of the output signal.

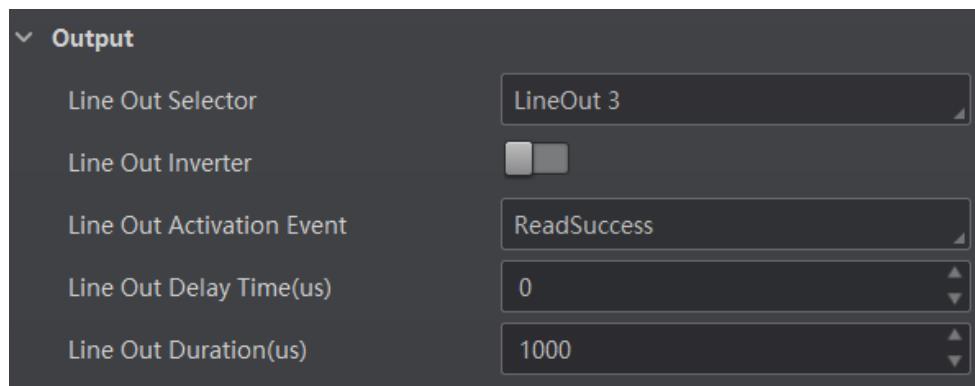



Figure 9-59 Select Read Success

## Select Light Strobe Long

If you select **LightStrobeLong** as **Line Out Activation Event**, and you do not need to set any parameters.

## Select Command Control IO

If you select **CommandControlIO** as **Line Out Activation Event**, and you do not need to set any parameters.

- **Control Start Str:** It sets the start string of command control.
- **Control Stop Str:** It sets the stop string of command control.
- **Control IO Consist Output Enable:** When it is enabled, the client starts output when receiving the start string and ends output only when receiving the stop string.

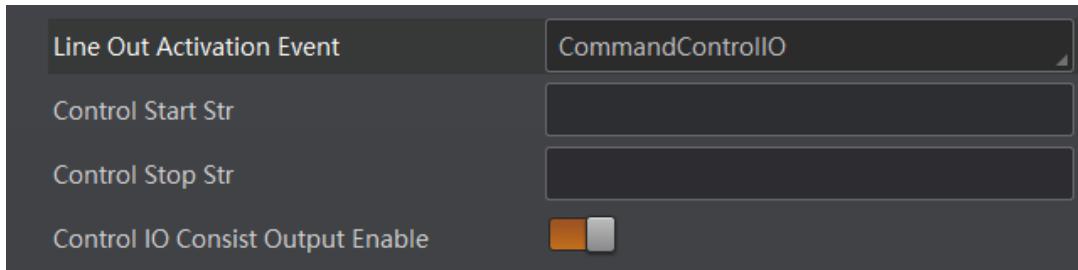



Figure 9-60 Select Command Control IO

### 9.5.3 Enable Line Inverter

The line inverter function allows the device to invert the electrical signal level of an I/O signal, and meet requirements of different devices for high or low electrical signal level.

You can go to **I/O Control Settings** → **Output**, and enable **Line Out Inverter**.



The **Line Out Inverter** function is disabled by default.

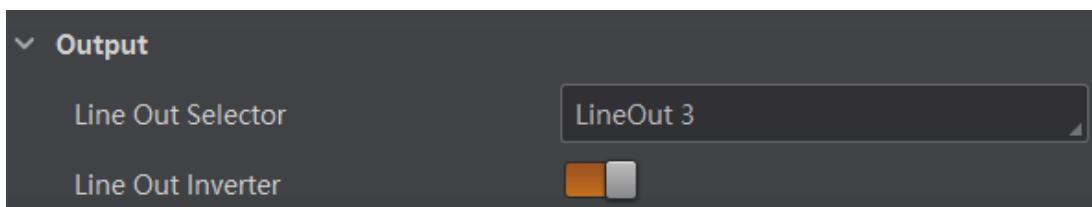



Figure 9-61 Enable Line Out Inverter

## 9.6 Communication Settings

The communication protocol is used to transmit and output code reading result and image. The communication protocol is related to the device modes. With various device modes, the device supports different communication protocols and corresponding parameters.

- If the device's operation mode is **Test** or **Raw**, it only supports **SmartSDK** protocol and no parameter settings are required.
- If the device's operation mode is **Normal**, it supports **SmartSDK**, **TCP Client**, **Serial**, **FTP**, **TCP Server**, **Profinet**, **Melsec/SLMP**, **EthernetIp**, **ModBus**, **UDP**, and **Fins** communication protocols, and you need to set corresponding parameters.



- The supported communication protocols may differ by device models.
- The specific parameters of communication protocols may differ by device models.

## 9.6.1 Set SmartSDK

If you select **SmartSDK** as the communication protocol, you can configure the following parameters.

**Table 9-9 SmartSDK Communication Protocol**

| Parameter                | Description                                                         |
|--------------------------|---------------------------------------------------------------------|
| <b>SmartSDK Protocol</b> | If enabled, the device will output data via SmarkSDK.               |
| <b>Encode JPEG Flag</b>  | The device will compress images in JPG format after enabling it.    |
| <b>Quantity of JPG</b>   | It sets the image compression quality, and it ranges from 50 to 99. |

## 9.6.2 Set TCP Client

If you select **TCP Client** as the communication protocol, you can configure the following parameters.

**Table 9-10 TCP Client Communication Protocol**

| Parameter                   | Description                                                                      |
|-----------------------------|----------------------------------------------------------------------------------|
| <b>TCP Protocol</b>         | If enabled, the device will output data via the TCP server.                      |
| <b>TCP Dst Addr</b>         | Enter the IP address of the server that receives data output by the code reader. |
| <b>TCP Dst Port</b>         | Enter the port No. of the server that receives data output by the code reader.   |
| <b>Heartbeat Enable</b>     | If enabled, the software will send heartbeat text.                               |
| <b>Barcode as Heartbeat</b> | If enabled, you can set heartbeat text and time.                                 |
| <b>Heartbeat Text</b>       | Enter the content of heartbeat text.                                             |
| <b>Heartbeat Time</b>       | Set the duration of the heartbeat.                                               |

## 9.6.3 Set Serial

If you select **Serial** as the communication protocol, you can configure the following parameters.

**Table 9-11 Serial Communication Protocol**

| Parameter               | Description                                                    |
|-------------------------|----------------------------------------------------------------|
| <b>Serial Protocol</b>  | If enabled, the code reader will output data via serial port.  |
| <b>Serial Baudrate</b>  | The baud rate of the serial port of the PC that receives data. |
| <b>Serial Data Bits</b> | Data bits of the serial port of the PC that receives data.     |

| Parameter               | Description                                                                                                                                                                   |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |  <b>Note</b><br>The hexadecimal trigger is supported only when <b>Serial Data Bits</b> is 8. |
| <b>Serial Parity</b>    | Parity bits of the serial port of the PC that receives data.                                                                                                                  |
| <b>Serial Stop Bits</b> | Stop bits of the serial port of the PC that receives data.                                                                                                                    |

## 9.6.4 Set FTP

If you select **FTP** as the communication protocol, you can configure the following parameters.

**Table 9-12 FTP Communication Protocol**

| Parameter            | Description                                                  |
|----------------------|--------------------------------------------------------------|
| <b>FTP Protocol</b>  | If enabled, the code reader will output data via FTP server. |
| <b>FTP Host Addr</b> | IP address of the FTP host.                                  |
| <b>FTP Host Port</b> | Port No. of the FTP host.                                    |
| <b>FTP User Name</b> | User name of the FTP.                                        |
| <b>FTP User PWD</b>  | Password of the FTP.                                         |

## 9.6.5 Set TCP Server

If you select **TCP Server** as the communication protocol, you can configure the following parameters.

**Table 9-13 TCP Server Communication Protocol**

| Parameter                                 | Description                                                                                                                                                  |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>TCP Server Enable</b>                  | If enabled, the code reader will output data via TCP server.                                                                                                 |
| <b>TCP Server Port</b>                    | The port No. of the TCP server that receives data output by code reader.                                                                                     |
| <b>TCP Server Flexible Connect Enable</b> | If enabled, when the connection count reaches the maximum number 8, a new connection is supported and the earliest connection is squeezed out.               |
| <b>TCP Server Heartbeat Enable</b>        | If enabled, the client sends a heartbeat packet to the server at a fixed interval to check whether the information transmission channel is working properly. |
| <b>TCP Server Barcode As Heartbeat</b>    | If enabled, the code read by the client can be sent as heartbeat packets.                                                                                    |

| Parameter                        | Description                                                                                                                                                           |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>TCP Server Heartbeat Text</b> | Set the beginning and end of the heartbeat data. The value is <b>heartbeat</b> by default.                                                                            |
| <b>TCP Server Heartbeat Time</b> | Set the interval for sending heartbeat packets, in seconds. If no heartbeat response is received within the configured time, the client will release the code reader. |

## 9.6.6 Set Profinet

If you select **Profinet** as the communication protocol, you can configure the following parameters.

**Table 9-14 Profinet Communication Protocol**

| Parameter                          | Description                                                                                                      |
|------------------------------------|------------------------------------------------------------------------------------------------------------------|
| <b>Profinet Enable</b>             | If enabled, the device will output data via Profinet protocol.                                                   |
| <b>Profinet Device Name</b>        | Enter the name of the code reader, which is used for code reader recognition in Profinet protocol communication. |
| <b>Profinet Result Module Size</b> | Select from the drop-down list the result module size.                                                           |
| <b>Profinet Result Timeout</b>     | Set the maximum waiting time for the result (unit: s).                                                           |

## 9.6.7 Set MELSEC

If you select **Melsec/SLMP** as the communication protocol, you can configure the following parameters.

**Table 9-15 MELSEC Communication Protocol**

| Parameter                      | Description                                                                          |
|--------------------------------|--------------------------------------------------------------------------------------|
| <b>MELSEC Protocol Enable</b>  | If enabled, the code reader will output data via MELSEC protocol.                    |
| <b>MELSEC Server IP</b>        | IP address of the Programmable Logic Controller (PLC) connected to the code reader.  |
| <b>MELSEC Server Port</b>      | Port number of the Programmable Logic Controller (PLC) connected to the code reader. |
| <b>MELSEC Frame Type</b>       | Frame type of the MELSEC.                                                            |
| <b>MELSEC Network Number</b>   | Network number to communicate with.                                                  |
| <b>MELSEC Node Number</b>      | Node number to communicate with.                                                     |
| <b>MELSEC Processor Number</b> | Processor number to communicate with.                                                |

| Parameter                           | Description                                                                |
|-------------------------------------|----------------------------------------------------------------------------|
| <b>MELSEC Control Poll Interval</b> | Requested time between successive polls of the control block from the PLC. |
| <b>MELSEC Control Space</b>         | It sets storage space of the control area.                                 |
| <b>MELSEC Control Offset</b>        | It sets the start offset address of the control area.                      |
| <b>MELSEC Control Size (Word)</b>   | It sets the size of the control area.                                      |
| <b>MELSEC Status Space</b>          | It sets storage space of the status area.                                  |
| <b>MELSEC Status Offset</b>         | It sets the start offset address of the status area.                       |
| <b>MELSEC Status Size (Word)</b>    | It sets the size of the status area.                                       |
| <b>MELSEC Result Space</b>          | It sets storage space of the result area.                                  |
| <b>MELSEC Result Offset</b>         | It sets the start offset address of the result area.                       |
| <b>MELSEC Result Size (Word)</b>    | It sets the size of the result area.                                       |
| <b>MELSEC Result Byte Swap</b>      | If it is enabled, the client software will swap MELSEC results.            |
| <b>MELSEC Result Timeout</b>        | It sets the MELSEC result timeout, and the unit is s.                      |

## 9.6.8 Set Ethernet/IP

If you select **EthernetIp** as the communication protocol, you can configure the following parameters.

**Table 9-16 Ethernet/IP Communication Protocol**

| Parameter                                     | Description                                                            |
|-----------------------------------------------|------------------------------------------------------------------------|
| <b>EthernetIP Enable</b>                      | If enabled, the code reader will output data via Ethernet/IP protocol. |
| <b>EthernetIP Input Assembly Size (Word)</b>  | It sets input assembly size of the Ethernet/IP protocol.               |
| <b>EthernetIP Output Assembly Size (Word)</b> | It sets output assembly size of the Ethernet/IP protocol.              |
| <b>EthernetIP Result Byte Swap</b>            | If enabled, it will swap the results.                                  |
| <b>EthernetIP Result Timeout (s)</b>          | It sets the result timeout of the Ethernet/IP protocol.                |

## 9.6.9 Set ModBus

If you select **Modbus** as the communication protocol, you can configure the following parameters.

**Table 9-17 ModBus Communication Protocol**

| ModBus                            | Description                                                       |
|-----------------------------------|-------------------------------------------------------------------|
| <b>ModBus Enable</b>              | If enabled, the code reader will output data via ModBus protocol. |
| <b>ModBus Mode</b>                | Select a mode from <b>Server</b> and <b>Client</b> .              |
| <b>ModBus Control Space</b>       | The value is "holding_register" by default and not editable.      |
| <b>ModBus Control Offset</b>      | Offset of the control address. The default value is 0.            |
| <b>ModBus Control Size (Word)</b> | The value is 1 by default.                                        |
| <b>ModBus Status Space</b>        | It sets status space and it is "holding_register" by default.     |
| <b>ModBus Status Offset</b>       | It sets status offset and it is 1 by default.                     |
| <b>ModBus Status Size (Word)</b>  | It is 1 by default.                                               |
| <b>ModBus Result Space</b>        | It set result space and it is "holding_register" by default.      |
| <b>ModBus Result Offset</b>       | It is 2 by default.                                               |
| <b>ModBus Result Size (Word)</b>  | It is 100 by default.                                             |
| <b>ModBus Result Byte Swap</b>    | If it is enabled, the client software will swap ModBus results.   |
| <b>ModBus Result Timeout (s)</b>  | It sets the result timeout of the ModBus protocol.                |

## 9.6.10 UDP

If you select **UDP** as the communication protocol, you can configure the following parameters.

**Table 9-18 UDP Communication Protocol**

| Parameter                  | Description                                                                    |
|----------------------------|--------------------------------------------------------------------------------|
| <b>UDP Protocol Enable</b> | If enabled, the code reader will output data via User Datagram Protocol (UDP). |
| <b>UDP Dst Ip</b>          | The IP address of the PC receiving the output data.                            |
| <b>UDP Dst Port</b>        | The port of the PC receiving the output data.                                  |

### 9.6.11 Fins

If you select **Fins** as the communication protocol, you can configure the following parameters:

**Table 9-19 Fins Communication Protocol**

| Parameter                              | Description                                                   |
|----------------------------------------|---------------------------------------------------------------|
| <b>Fins Enable</b>                     | If enabled, the code reader will output data via TCP/UDP FIN. |
| <b>Fins Server IP</b>                  | It sets the server IP of Fins.                                |
| <b>Fins Server Port</b>                | It is 9600 by default.                                        |
| <b>Fins Control Poll Interval (ms)</b> | It sets how often read data.                                  |
| <b>Fins Control Space</b>              | It sets storage space of the control area.                    |
| <b>Fins Control Offset</b>             | It sets the start offset address of the control area.         |
| <b>Fins Control Size (Word)</b>        | It sets the size of the control area.                         |
| <b>Fins Status Space</b>               | It sets storage space of the status area.                     |
| <b>Fins Status Offset</b>              | It sets the start offset address of the status area.          |
| <b>Fins Status Size (Word)</b>         | It sets the size of the status area.                          |
| <b>Fins Result Space</b>               | It sets storage space of the result area.                     |
| <b>Fins Result Offset</b>              | It sets the start offset address of the result area.          |
| <b>Fins Result Size (Word)</b>         | It sets the size of the result area.                          |
| <b>Fins Result Byte Swap</b>           | If it is enabled, the client software will swap Fins results. |
| <b>Fins Result Timeout (s)</b>         | It sets the Fins result timeout, and the unit is s.           |

## 9.7 Data Processing Settings

In **Data Processing**, you can set filter rules for reading codes and other data processing related parameters.



The specific parameters may differ by device models and firmware versions.

## 9.7.1 Set Filter Rule

You can set rules via **Filter Rule** to filter unwanted codes to improve the reading efficiency.

### Normal Filter Mode

If the device's operation mode is normal, trigger mode is on, and filter mode is normal, you can set following parameters according to actual demands.

- **Numeral Filter:** If enabled, the device will only parse and read the numeral contents of the codes, and the non-numeral contents will be filtered out.
- **Begin with Specific Character for Result:** enabled, the device will only read the codes which begin with a specific character string.
- **Begins with:** Enter the character string.
- **Include Specific Character in Barcode:** If enabled, the device will only read the codes which include a specific character string.
- **Character:** Enter the character string.
- **Exclude Specific Character in Barcode:** If enabled, the device will only read the codes without a specific character string.
- **Character:** Enter the character string.
- **Instant Output Mode Enable:** If enabled, the device will output code data immediately once a code is read. If not enabled, the code data will be output after the device trigger process ends.



#### Note

The parameter is only available when the operation mode is set to Normal mode and the trigger mode is enabled.

- **Min. Output Time(ms) :** Define the minimum time duration (unit: ms) for data output. The duration starts from trigger time. Note: The parameter is only available when the operation mode is set to Normal mode and the trigger mode is enabled.
- **Remove Duplicate By ROI:** If it is enabled, the device will filter information based on drawn ROIs.
- **Max. Code Length:** If the length of a code is longer (in terms of the number of characters) than the configured value, the device will NOT parse the code.  
For example, if you set the value to 9, the device will not parse the codes which contain more than 9 characters.
- **Min. Code Length:** If the length of a code is shorter (in terms of the number of characters) than the configured value, the device will NOT parse the code.  
For example, if you set the value to 6, the device will not parse the codes which contain fewer than 6 characters.
- **Read Times Threshold:** If the reading results of a code is same for the configured times, the code will be regarded as valid and its data will be output. Or the code will be regarded as invalid and its data will not be output.

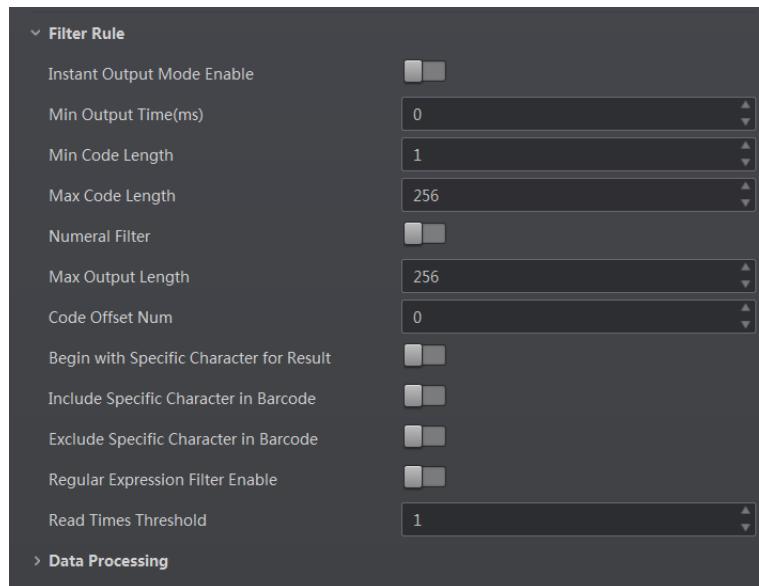



Figure 9-62 Normal Filter Mode

## Regular Expression Filter Mode

The device supports filtering codes via the regular expression.

### Steps

1. Select **Regular Expression** as the **Filter Mode**, and click **Set** in **Regular Expression Filter** to enter regular expression filter settings window.
2. Import local files or add customized filter rules to set the regular expression.
  - Import local files: Click **Import** to import local .xml files, and click **OK** to finish.

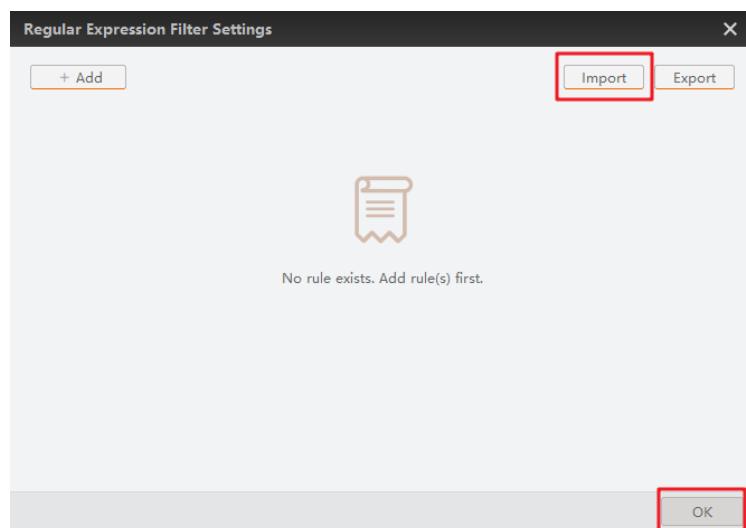
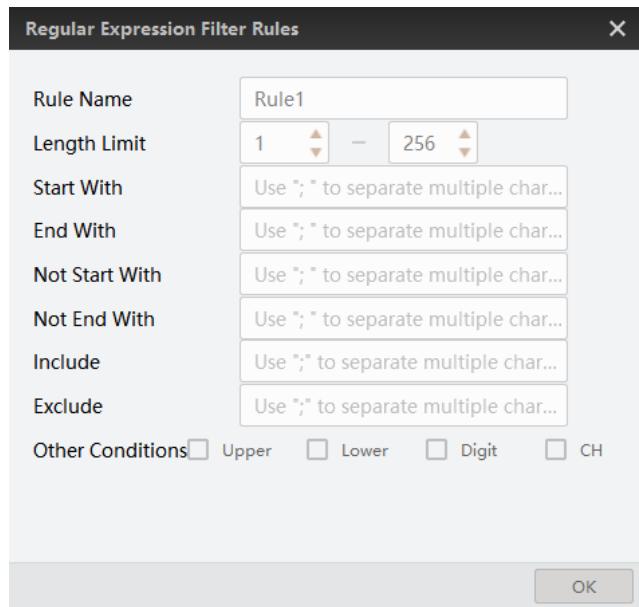
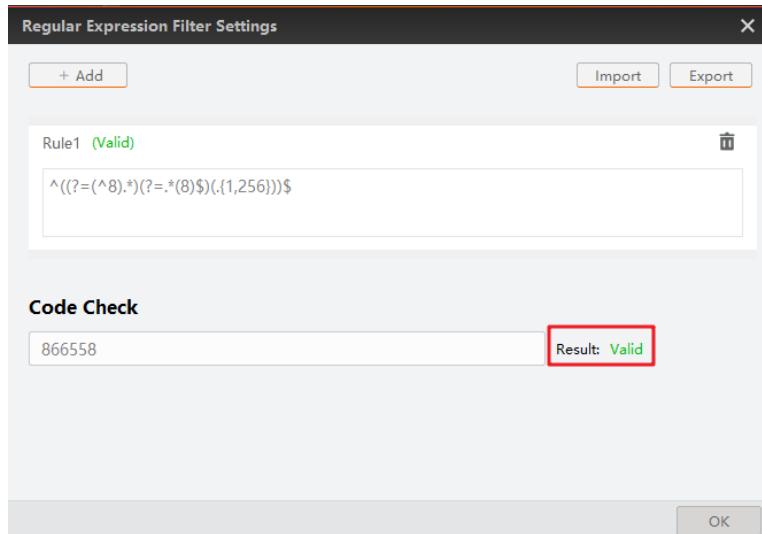




Figure 9-63 Regular Expression Filter Settings

- Add customized filter rule: Click **Add** and set related parameters in the popped-up window, and click **OK** after configuring parameters.




**Figure 9-64 Enter Customized Regular Expression Filter Rules**

**Table 9-20 Filter Rule Parameters**

| Parameter      | Description                                                                                                                                                                                                                                                                                                        |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Rule Name      | The default rule name is Rule 1, and you can edit it according to actual demands.                                                                                                                                                                                                                                  |
| Length Limit   | It sets the length range of the code, and its upper limit is 256.                                                                                                                                                                                                                                                  |
| Start With     | <p>It sets the specific start with code. You can use semicolon to separate if there are multiple characters.</p> <p> <b>Note</b></p> <p>If multiple characters are used, code meeting one of these characters is valid.</p>     |
| End With       | <p>It sets the specific end with code. You can use semicolon to separate if there are multiple characters.</p> <p> <b>Note</b></p> <p>If multiple characters are used, code meeting one of these characters is valid.</p>       |
| Not Start With | <p>It excludes the specific start with code. You can use semicolon to separate if there are multiple characters.</p> <p> <b>Note</b></p> <p>If multiple characters are used, code meeting one of these characters is valid.</p> |
| Not End With   | <p>It excludes the specific end with code. You can use semicolon to separate if there are multiple characters.</p> <p> <b>Note</b></p>                                                                                          |

| Parameter        | Description                                                                                                                                                                                                                                                                                             |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | If multiple characters are used, code meeting one of these characters is valid.                                                                                                                                                                                                                         |
| Included         | It sets the code with specific content. You can use semicolon to separate if there are multiple characters.<br> <b>Note</b><br>If multiple characters are used, code meeting all these characters is valid.            |
| Excluded         | It sets the code without specific content. You can use semicolon to separate if there are multiple characters.<br> <b>Note</b><br>If multiple characters are used, code meeting all these characters is valid.         |
| Character        | Set a filter for a specific character in the code that must start from a certain position. The first digit from left to right represents the 0th position. For example, if you set this parameter to <b>aa from 2 Bit Start</b> , the code "1aa23" does not meet the requirement, whereas "12aa3" does. |
| Other Conditions | You can select uppercase, lowercase, digit or Chinese.                                                                                                                                                                                                                                                  |

3. After setting filter rule, enter the code in **Code Check** to check if the filter rule is successful.



**Figure 9-65 Code Check**



If the filter rule you configured is correct, the result is valid. Otherwise, it is invalid.

4. (Optional) Click  to delete unwanted filter rules.
5. (Optional) Click **Export** to export configured filter rules to local PC.

---



The filter rule parameters of the regular expression may differ by device models and firmware versions.

---

## 9.7.2 Data Processing Settings

You can configure the contents contained in the output code information.

---

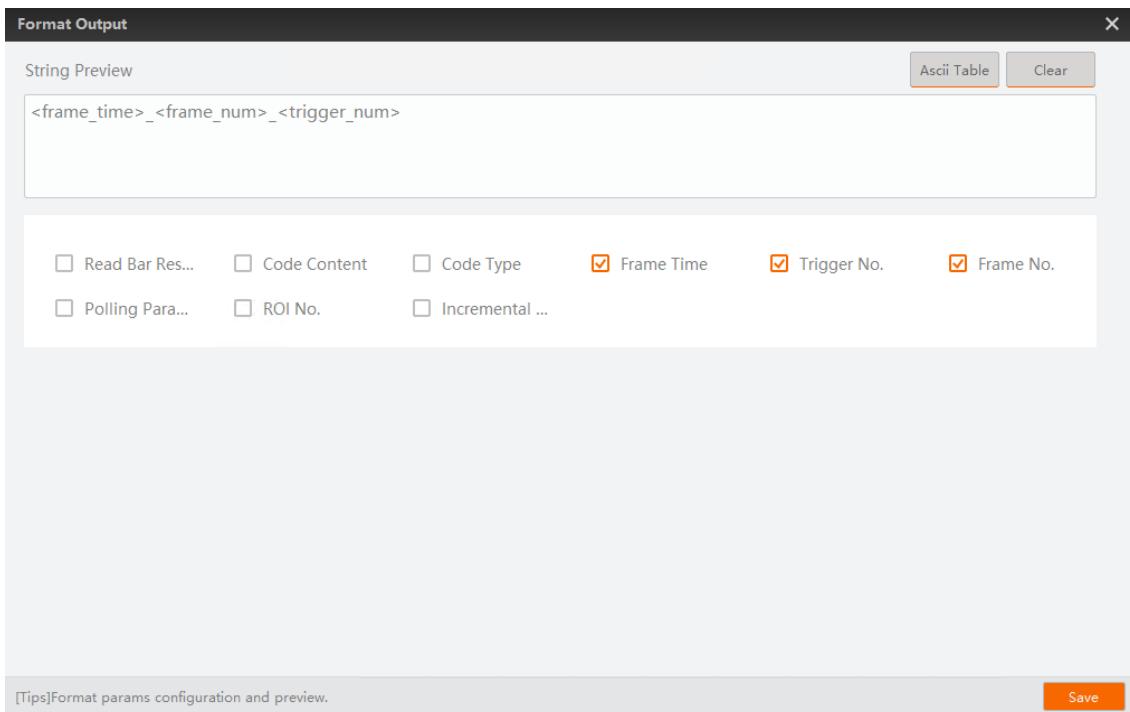


- The actual parameters displayed may vary with different communication protocols. For details about communication settings, refer to section **Communication Settings**.
- The specific parameters and parameter order may differ by the device's operation mode, trigger mode, device models and firmware versions.

---

### SmartSDK

- **Sorting Rules:** Specify the sorting rules of output images. Multiple sorting rules are supported.
- **One By One Enable:** If it is enabled, the device will send one piece of code information each time in accordance with the specified interval. You can set the interval via **One By One Interval** and the default value 100 ms.
- **Local Save Picture Mode:** It includes **Off**, **NoRead**, and **Insufficient Code**. You can select **NoRead** to let the device save images when no code is read. It is available when the operation mode is Normal and trigger is opened.


### FTP

When the communication protocol is FTP, set the following parameters of data processing:

- **FTP Picture Name Format:** Click **Edit** to select one or multiple items to be contained in the picture name and click **Save**. The selected items will be displayed in the frame below. You can also enter more contents directly in the frame.

## Note

Click **Format Output** on the control toolbar to open the Format Output window to set the FTP picture name format quickly.



**Figure 9-66 Format Output**

- **Local Save Picture Mode:** It includes **Off**, **NoRead**, and **Insufficient Code**. You can select **NoRead** to let the device save images when no code is read.
- **Local Picture Type:** Specify the type of pictures saved locally. You can select **JPEG** or **BMP**.
- **Local Override Strategy:** It includes **Off**, **Max Count**, **Loop Max Count**, and **Reserve Space**. **Off** means that disk will not be overridden. **Max Count** means that the device will save image quantity configured in **Local Override Max. Count**, and no more imaged will be saved when the disk is full. **Loop Max Count** means that after the image quantity is reached the number configured in **Local Override Max. Count**, the device will delete the first image and continue to save the latest image. **Reserve Space** means that the device will save images when the disk is safe in terms of storage space If the available disk space is lower than configured value, and images will be deleted.
- **Local Override Max. Count:** You need to set this parameter when selecting **Max Count** or **Loop Max Count** as **Local Override Strategy**.
- **Local Time Format:** It selects a format type from the drop-down list for the time stamp contained in the file name. Take **YYYYMMDD\_HHMMSSFFF** as an example, (from the left to the right) **YYYY** represents year, **MM** represents month, **DD** represents date, **HH** represents hour, **MM** represents minute, **SS** represents second, and **FFF** represents millisecond.

- **Local Save Picture Strategy:** It sets the picture saving method. Four methods are available, including recently frame, all frames, range frames and specific frame. If specific frame is selected as **Local Save Picture Strategy**, you need to set **Local Picture Index**.
- **Output Retrans Enable:** Enable to allow data re-transmission. Specify the limit of re-transmission attempts in **Output Retrans Number**.
- **FTP Transmission Conditions:** Set the condition to upload the data output by the device to FTP server.
  - **All:** Always upload the data.
  - **ReadBarcode:** Upload the data only when the code is read by the device.
  - **NoReadBarcode:** Upload the data only when no code is read by the device.
- **FTP Transmission Result Contain:** Select contents to upload to the FTP server.
  - **JustResult:** Only upload the content of the code.
  - **JustPicture:** Only upload the code image.
  - **ResultAndPicture:** Upload both the content of the code and the code image.
- **FTP Time Format:** Select a format type from the drop-down list for the time stamp contained in the file name.

## Note

Take YYYYMMDD\_HHMMSSFFF as an example, (from the left to the right) YYYY represents year, MM month, DD date, HH hour, MM minute, SS second, FFF millisecond.

- **FTP Save Picture Strategy:** Select from the drop-down list the picture saving strategy from **Recent Frame**, **All Frames**, **Range Frames**, and **Specific Frame** accordingly. If **Specific Frame** is selected, you can specify the frame by entering its index in the box of FTP Picture Index.
- **FTP Picture Index:** Set the picture index.
- **Sorting Rules:** Specify the sorting rules of output images. Multiple sorting rules are supported.
- **One By One Enable:** If it is enabled, the device will send one piece of code information each time in accordance with the specified interval. You can set the interval via **One By One Interval** and the default value 100 ms.

## **TCP Client / Serial / TCP Server / Profinet / Melsec/SLMP / EthernetIp / Modbus / UDP / FINS**

When the communication protocol is TCP Client / Serial / TCP Server / Profinet / MELSEC / EthernetIp / Modbus / UDP / FINS, set the following parameters of data processing.

## Note

Here we use “\*\*\*” to represent the specific protocol name.

- **\*\*\* Output Format:** Click **Edit** to select one or multiple items to be contained in the picture name and click **Save**. The selected items will be displayed in the frame below. You can also enter more contents directly in the frame.
- **Local Save Picture Mode:** It includes **Off**, **NoRead**, and **Insufficient Code**. You can select

**NoRead** to let the device save images when no code is read.

- **Local Picture Type:** Specify the type of pictures saved locally. You can select **JPEG** or **BMP**.
- **Local Override Strategy:** It includes **Off**, **Max Count**, **Loop Max Count**, and **Reserve Space**. **Off** means that disk will not be overridden. **Max Count** means that the device will save image quantity configured in **Local Override Max. Count**, and no more imaged will be saved when the disk is full. **Loop Max Count** means that after the image quantity is reached the number configured in **Local Override Max. Count**, the device will delete the first image and continue to save the latest image. **Reserve Space** means that the device will save images when the disk is safe in terms of storage space If the available disk space is lower than configured value, and images will be deleted.
- **Local Override Max. Count:** You need to set this parameter when selecting **Max Count** or **Loop Max Count** as **Local Override Strategy**.
- **Local Time Format:** It selects a format type from the drop-down list for the time stamp contained in the file name. Take YYYYMMDD\_HHMMSSFFF as an example, (from the left to the right) YYYY represents year, MM represents month, DD represents date, HH represents hour, MM represents minute, SS represents second, and FFF represents millisecond.
- **Local Save Picture Strategy:** It sets the picture saving method. Four methods are available, including recently frame, all frames, range frames and specific frame. If specific frame is selected as **Local Save Picture Strategy**, you need to set **Local Picture Index**.
- **\*\*\* Output Noread:** Enable this to set the default output content if no code is read during transmission. Edit the output text in **Output NoRead Text**.
- **\*\*\* Output Start Text:** The contents of the start part of the data output. You can set the contents as desired.
- **\*\*\* Output Stop Text:** The contents of the end part of the data output. You can set the contents as desired.
- **\*\*\* Output Barcode Enter Character Enable:** Whether to show input character in the data.
- **\*\*\* Output Barcode Newline Character Enable:** Whether to show new-line character in the data.
- **Sorting Rules:** Specify the sorting rules of output images. Multiple sorting rules are supported.
- **ROI Output Noread Enable:** Enable this to set the default output content if no code is read during transmission. Edit the output text in **Output NoRead Text**.
- **One By One Enable:** If it is enabled, the device will send one piece of code information each time in accordance with the specified interval. You can set the interval via **One By One Interval** and the default value 100 ms.

## 9.8 Contrast Control Settings

---



You need to set device's operation mode as normal before using this function.

---

The contrast control function compares the data that the device reads with preset data and outputs contrast result. The result can be used as the event source of trigger signal, including **Contrast Success** and **Contrast Fail**. This function has two ways to contrast, including regular contrast and consecutive number contrast.

## Regular Contrast

The regular contrast requires you to set code contents in advance, and the client software will contrast the data that the device reads with preset contents and outputs comparison result.

### Steps

1. Go to **Data Processing** → **Contrast Control**, enable **Contrast Enable**, and select **Regular** as **Contrast Rules**.
2. Set **Start Position** that means the stating position of the comparison.
3. Set **Character Number** that means the comparison quantity.
4. Set code contents in **Wildcard String**.



You can use wildcard \* and ?. \* stands for multiple strings you can use, and ? stands for one string you can use. \* can be used once only and ? can be used many times.

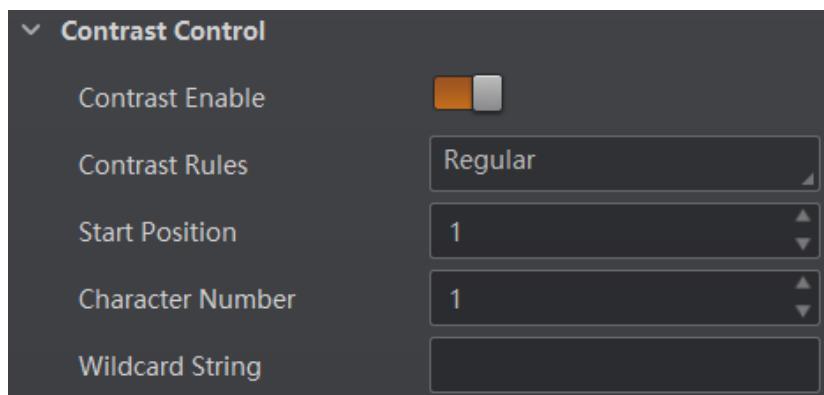



Figure 9-67 Regular Contrast

## Consecutive Number Contrast

The consecutive number contrast requires you to set consecutive code rules, and the client software will contrast the data that the device reads with preset rules and outputs contrast result.

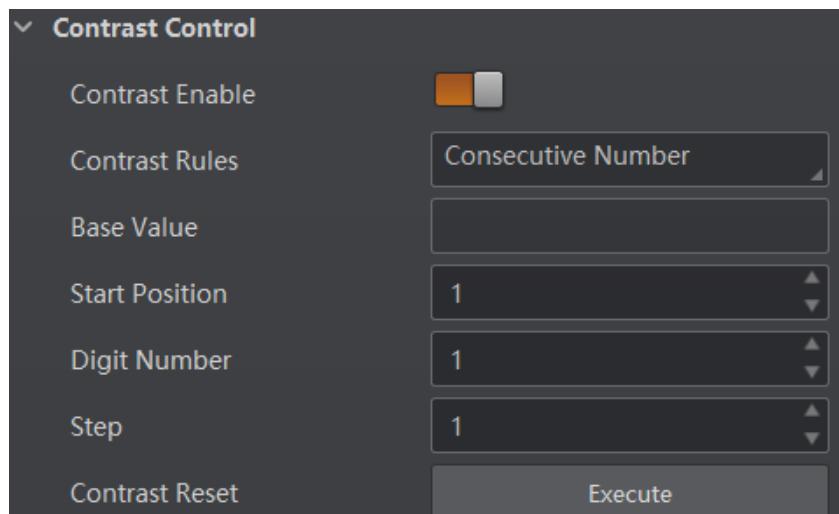
### Steps

1. Go to **Data Processing** → **Contrast Control**, enable **Contrast Enable**, and select **Consecutive Number** as **Compare Rules**.
2. Set **Start Position** that means the stating position of the comparison.

2. Set **Digital Number** that means the comparison quantity.
3. Set **Step** that means the client software will increase or decrease the preset value after each comparison according the step you set.

---

### **Note**


- If the preset value after increase or decrease exceeds the digital number you set, and then the preset value will become 0.
- The base value displays the preset value.

---

4. (Optional) Click **Execute** in **Contrast Reset** to reset comparison. After that, the client software will use the first code it reads as the preset value.

Here we take start position (3), digital number (2) and step (2) as an example to explain the consecutive number comparison:

- If the first code that the device reads is ur96k, and then the preset value is 96. The preset value increases to 98 (96+2).
- If the second code is yr98kjfd, and comparison succeeds. The preset value increases to 100 (98+2).
- If the third code is kl99fjkd, and comparison fails. The preset value does not increase.
- If the fourth code is kl00djf, and comparison succeeds. The preset value increases to 02 (00+2).



**Figure 9-68 Consecutive Number Contrast**

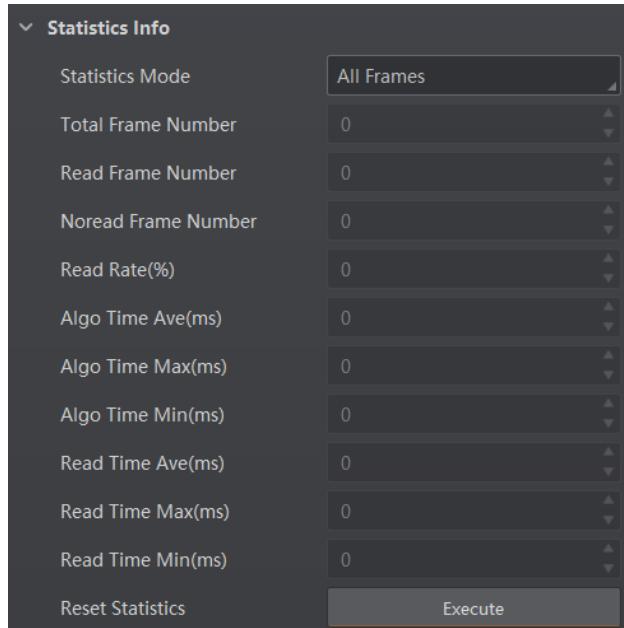
## 9.9 Statistics Information

The statistics information in the feature tree helps you to count data related with code reading.

---

### **Note**

You need to set device's operation mode as normal before using this function.


---

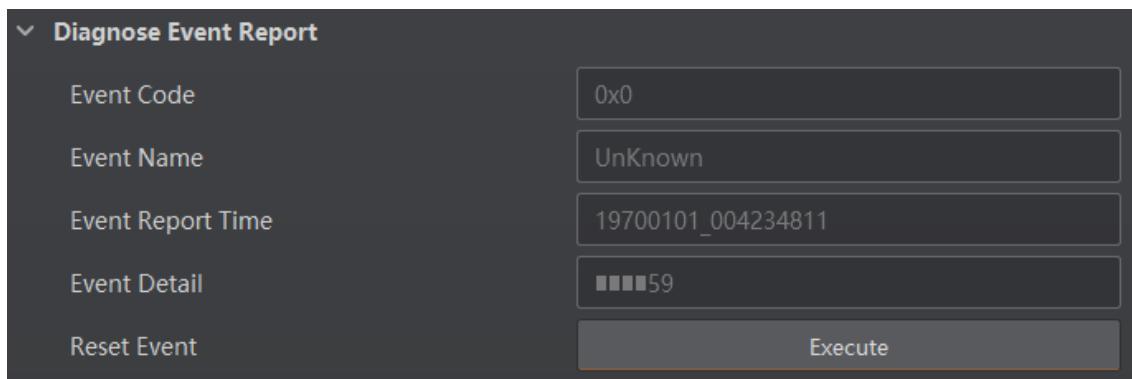
## Steps

1. Right click the device in **Device Connection**, and click **Feature Tree**.
2. Go to feature tree, find **Statistics Info.**, and select **Statistics Mode**:
  - **All Frames** means the client software will display all data since the device is powered on.
  - **Latest Frames** means the client software will display data of the last 10 frames.
3. View related parameters.
4. (Optional) Click **Execute** in **Reset Statistics** to reset statistics information.

**Table 9-21 Parameter Description**

| Parameter Name      | Description                                           |
|---------------------|-------------------------------------------------------|
| Total Frame Number  | The total frame quantity.                             |
| Read Frame Number   | The quantity of frames that have been read codes.     |
| Noread Frame Number | The quantity of frames that have not been read codes. |
| Read Rate           | It refers to the code reading ratio.                  |
| Algo Time Ave       | The average time of algorithm, and the unit is ms.    |
| Algo Time Max       | The max. time of algorithm, and the unit is ms.       |
| Algo Time Min       | The min. time of algorithm, and the unit is ms.       |
| Read Time Ave       | The average time of code reading, and the unit is ms. |
| Read Time Max       | The max. time of code reading, and the unit is ms.    |
| Read Time Min       | The min. time of code reading, and the unit is ms.    |
| Reset Statistics    | Click <b>Execute</b> to reset statistics information. |




**Figure 9-69 Statistics Information**

## 9.10 Diagnose Event Report

The diagnose event report function monitors memory and CPU usage rate, and let you know when there is a crash, higher CPU usage rate, insufficient memory, and other events.

### Steps

1. Right click the device in **Device Connection**, and click **Feature Tree**.
2. Go to feature tree, and find **Diagnose Event Report**.
3. View related information.
4. (Optional) Click **Execute** in **Reset Event** to clear all information.



**Figure 9-70 Event Report**

# Chapter 10 Device Maintenance

## 10.1 Update Firmware

The device supports updating firmware via the client software.

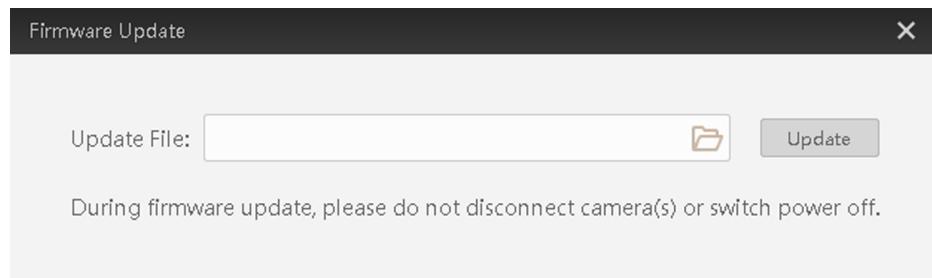
---

### Note

- Disconnect the device with client software.
- Please use the firmware package of the corresponding device model for upgrading.
- Do not power off the device or disconnect network during upgrading.
- The device will reboot automatically after updating the firmware.

---

### Steps

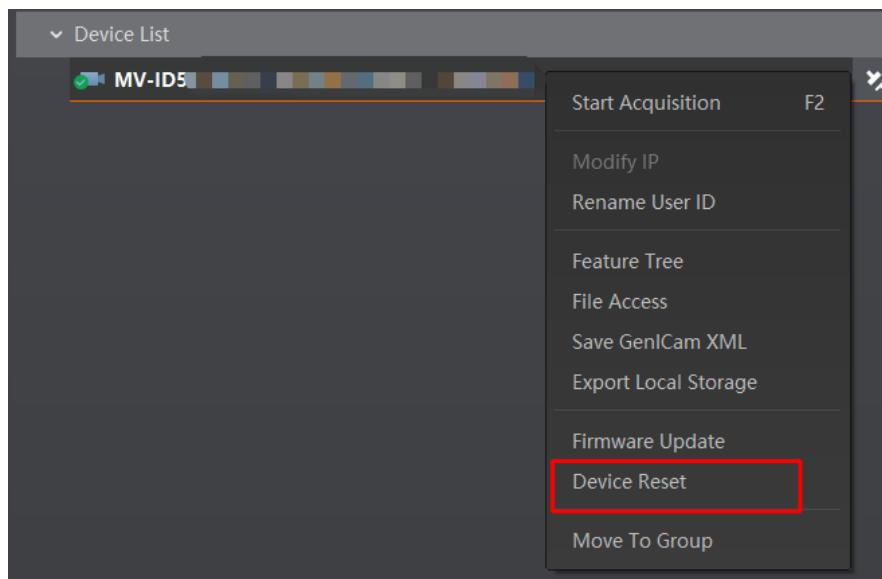

1. Select the device to be updated in the device list, and right click the device.
2. Click **Firmware Update**.
3. Click  to select update file from local PC, and click **Update** to update firmware.

---

### Note

You can also go to **Tool** → **Firmware Updater** to update firmware.

---




**Figure 10-1 Update Firmware**

## 10.2 Reboot Device

You can select the device to be rebooted in the device list, right click the device, and click

## Device Reset.



**Figure 10-2 Reboot Device**

# Chapter 11 I/O Electrical Feature and Wiring

The device has three opto-isolated input signals and three opto-isolated output signals.

## 11.1 Input Signal

The device's LineIn 0/1/2 is opto-isolated input, and their internal circuit is as follows.

 **Note**

- The input voltage ranges from 5 VDC to 30 VDC.
- The breakdown voltage is 36 VDC. Keep voltage stable.

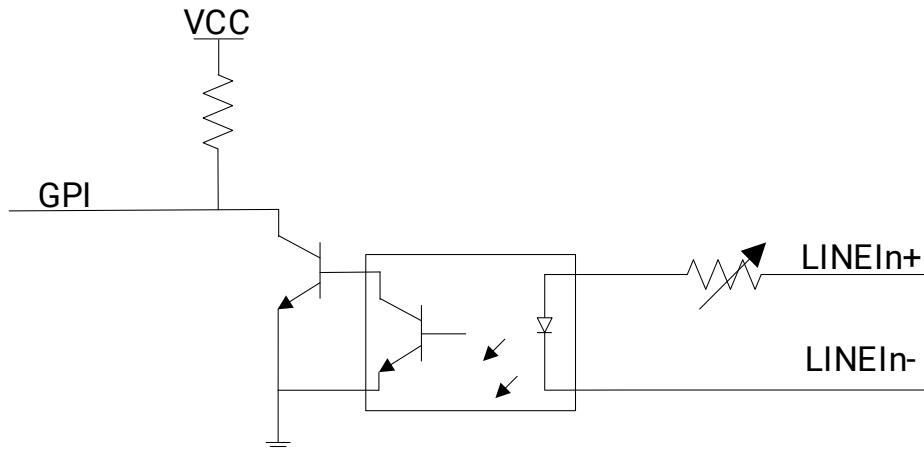



Figure 11-1 Internal Circuit of Input Signal

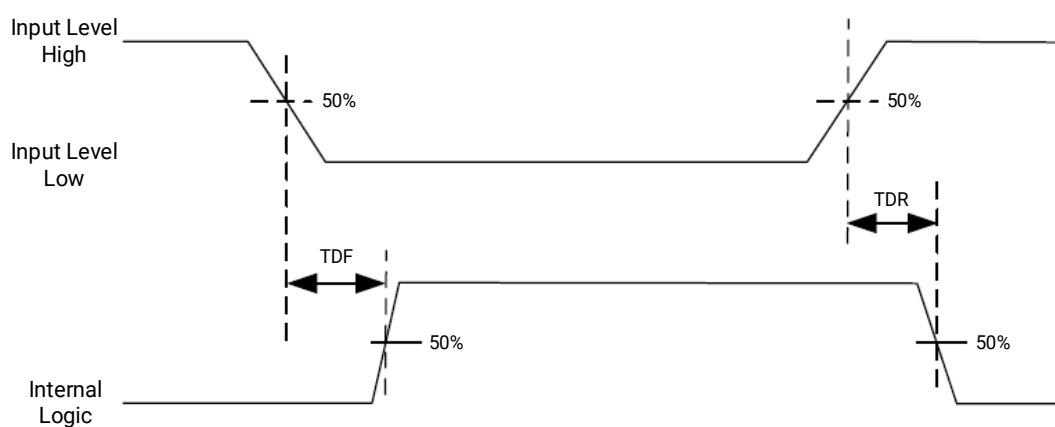
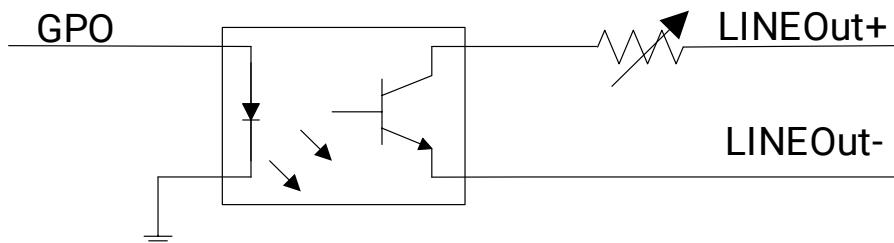
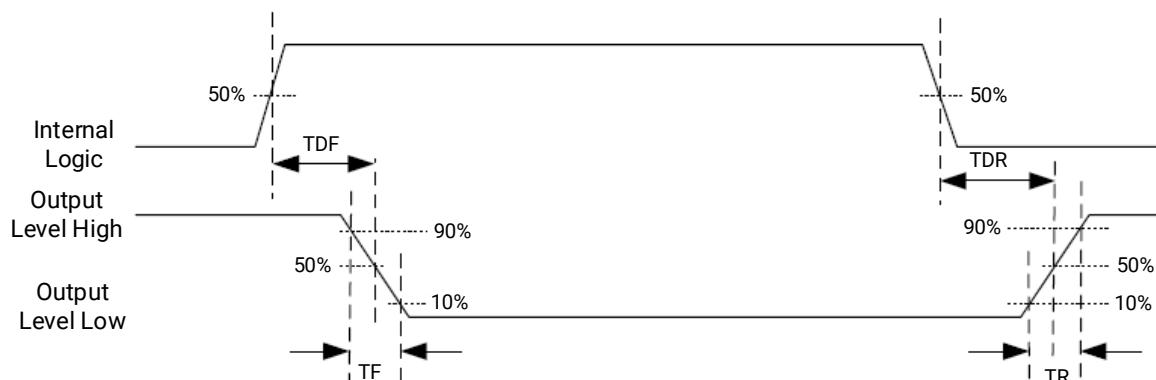



Figure 11-2 Input Logic Level

**Table 11-1 Input Electrical Feature**



| Parameter Name         | Parameter Symbol | Value        |
|------------------------|------------------|--------------|
| Input Logic Level Low  | VL               | 1.5 VDC      |
| Input Logic Level High | VH               | 2 VDC        |
| Input Falling Delay    | TDF              | 81.6 $\mu$ s |
| Input Rising Delay     | TDR              | 7 $\mu$ s    |

## 11.2 Output Signal

The device's LineOut 3/4/5 is opto-isolated output, and their internal circuit is as follows.



- The output voltage ranges from 5 VDC to 30 VDC.
- The maximum current is 45 mA.
- Do not directly connect with inductive load (e.g. DC motor, etc.) when outputting.

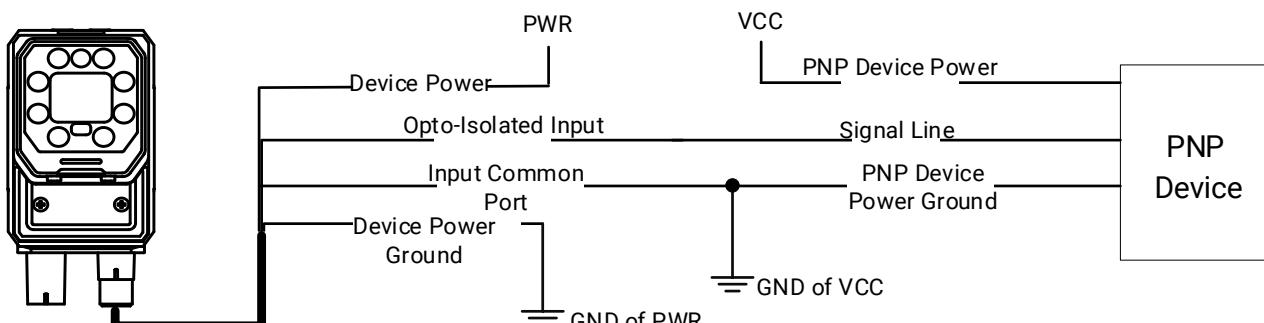
**Figure 11-3 Internal Circuit of Output Signal****Figure 11-4 Output Logic Level**



If the external voltage and resistance change, the corresponding current of output signal and output logic level low may differ.

**Table 11-2 Output Electrical Feature**

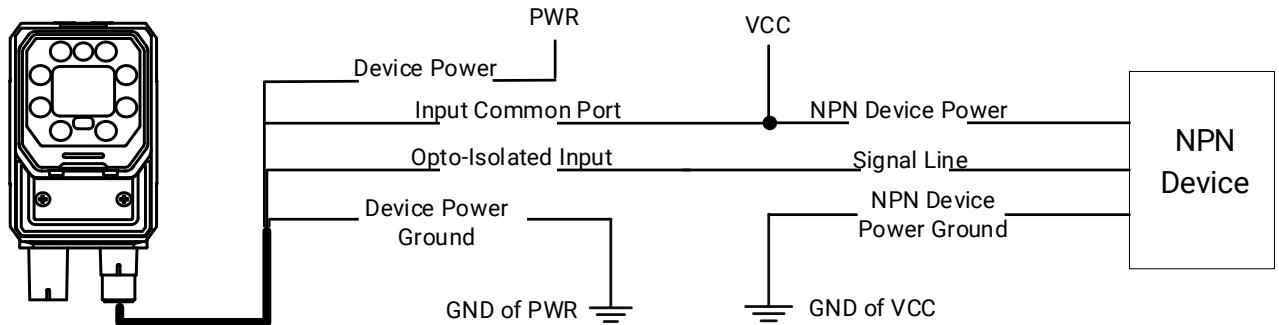
| Parameter Name          | Parameter Symbol | Value       |
|-------------------------|------------------|-------------|
| Output Logic Level Low  | VL               | 730 mV      |
| Output Logic Level High | VH               | 3.2 VDC     |
| Output Falling Delay    | TDF              | 6.3 $\mu$ s |
| Output Rising Delay     | TDR              | 68 $\mu$ s  |
| Output Falling Time     | TF               | 3 $\mu$ s   |
| Output Rising Time      | TR               | 60 $\mu$ s  |


## 11.3 Input Signal Wiring

The device can receive external input signal via I/O interface, and here we take LineIn 0 as an example to introduce input signal wiring.

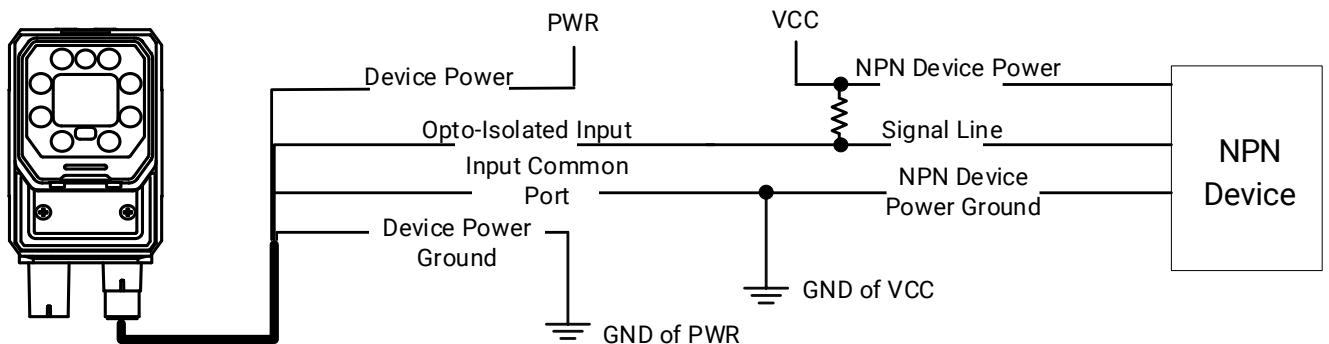


Input signal wiring may differ with different types of external devices.


### PNP Device



**Figure 11-5 Input Signal Connecting to PNP Device**


### NPN Device

If the VCC of NPN device is 12 VDC or 24 VDC and pull-up resistor is not used, its wiring is as follows.



**Figure 11-6 Input Signal Connecting to NPN Device Without Pull-Up Resistor**

If the VCC of NPN device is 12 VDC or 24 VDC and 1 K $\Omega$  pull-up resistor is used, its wiring is as follows.



**Figure 11-7 Input Signal Connecting to NPN Device with Pull-Up Resistor**

## 11.4 Output Signal Wiring

The device can output signal to external device via I/O interface, and here we take LineIn 3 as an example to introduce output signal wiring.

### Note

- Output signal wiring may differ with different types of external devices.
- The voltage of VCC should not higher than that of PWR. Otherwise, the device's output signal may have exception.

## PNP Device

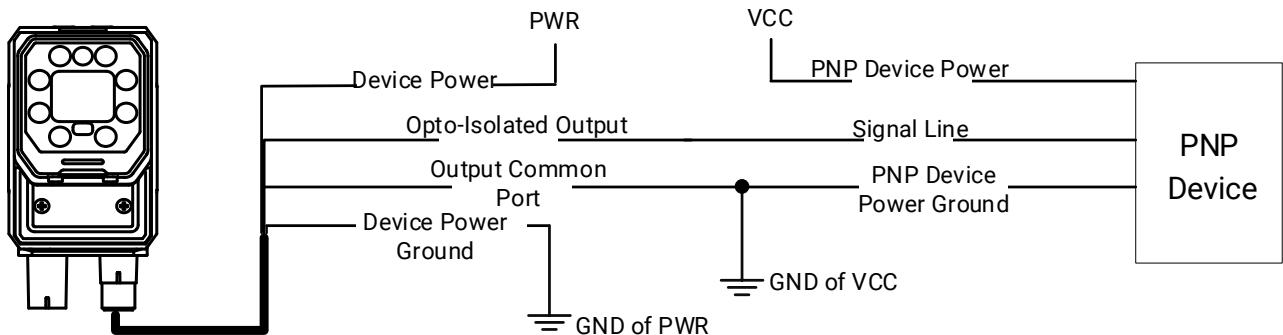



Figure 11-8 Output Signal Connecting to PNP Device

## NPN Device

If the VCC of NPN device is 12 VDC or 24 VDC and pull-up resistor is not used, its wiring is as follows.

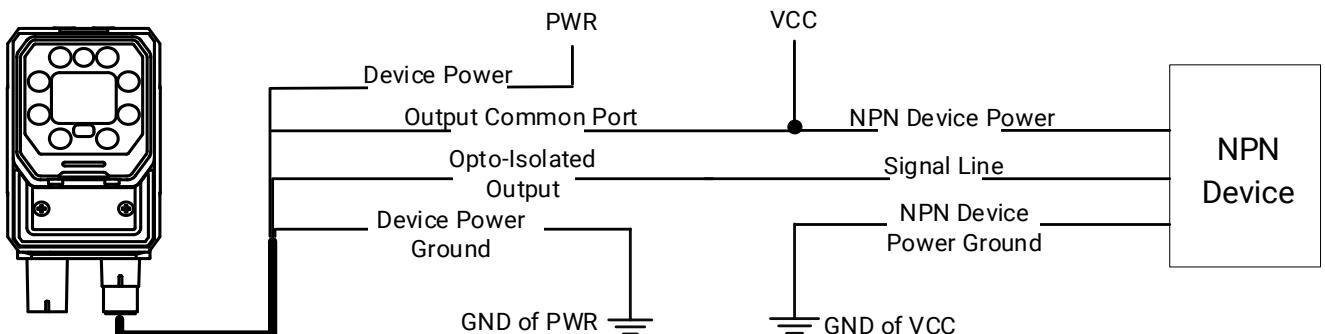



Figure 11-9 Output Signal Connecting to NPN Device Without Pull-Up Resistor

If the VCC of NPN device is 12 VDC or 24 VDC and 1 KΩ pull-up resistor is used, its wiring is as follows.

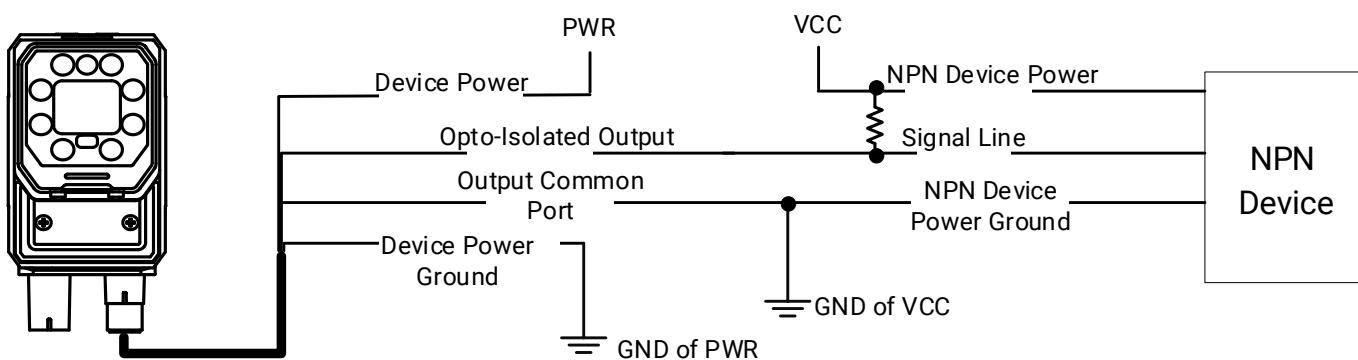



Figure 11-10 Output Signal Connecting to NPN Device with Pull-Up Resistor

## 11.5 RS-232 Serial Port

The device supports output via RS-232 serial port. The 9-pin male connector and 25-pin male connector are commonly used serial ports, as shown below. You can refer to the table below for the specific pin name and function.

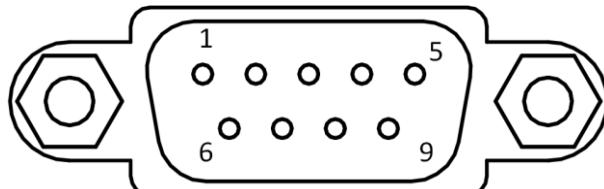



Figure 11-1 9-Pin Connector

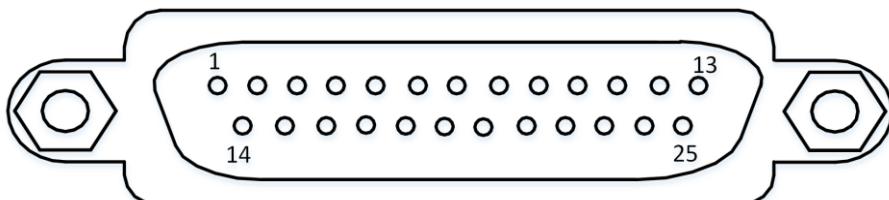



Figure 11-2 25-Pin Interface

Table 11-3 Pin Description

| Serial Port Type | Pin No. | Name | Function      |
|------------------|---------|------|---------------|
| 9-Pin Interface  | 2       | RX   | Receive data  |
|                  | 3       | TX   | Send data     |
|                  | 5       | GND  | Signal ground |
| 25-Pin Interface | 2       | TX   | Send data     |
|                  | 3       | RX   | Receive data  |
|                  | 7       | GND  | Signal ground |

You can refer to the serial port wiring below to connect the device with an external device.

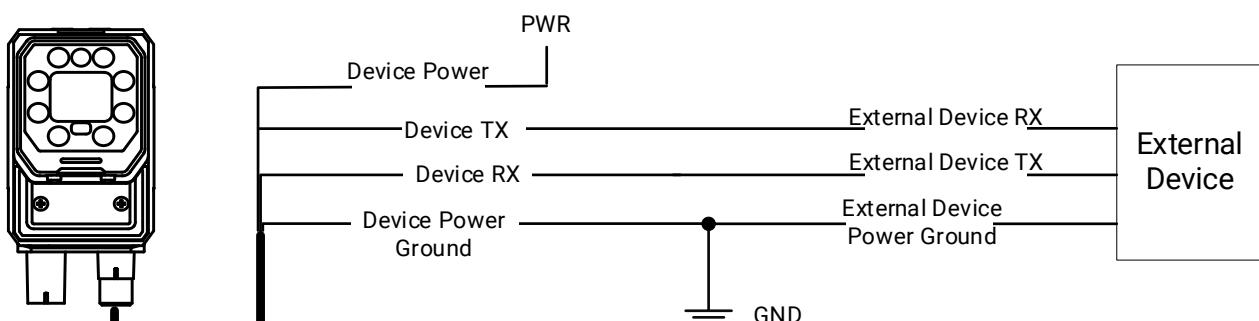



Figure 11-3 RS-232 Serial Port Wiring

## Chapter 12 FAQ (Frequently Asked Question)

### 12.1 Why the image is very dark?

#### Problem

All black or too dark during preview.

#### Reason

Too small adjustment value of exposure and gain, or the lens aperture is not opened enough.

#### Solution

Increase exposure and gain appropriately, or rotate the lens aperture to open largely.

### 12.2 Why the client enumerates a device, but fails to connect it?

#### Problem

The client enumerates a device, but fails to connect it.

#### Reason

- The device and the client are not in the same network segment.
- The device has been occupied by another software or program.

#### Solution

- Use IP Configurator to modify the IP address of the device.
- Disconnect the device from any other software or program, and then connect it to the client again.

### 12.3 Why there is no device listed after I run the IDMVS client software?

#### Problem

Run IDMVS client, and there is no listed device.

### Reason

- The device is powered off.
- Network exception.
- The auto enumeration is not enabled.
- The private protocol is set as the device enumeration protocol.

### Solution

- Check the device power connection (observe whether the PWR light is solid blue or not), to make sure the device is powered up normally.
- Check the network connection (observe whether the LNK light is solid green or not and ACT light is flashing yellow or not) to make sure the device can be connected to the network normally. PC port and the device are in the same network segment.
- Go to **Settings** → **General** to enable **Device List Auto-Enumeration**, and set **Standard Protocols And Private Protocol** as the **Device Enumeration Protocols**.

## 12.4 Why there is no image in the live view?

### Problem

No image in the live view.

### Reason

- Enabled trigger mode, but there is no trigger signal.
- Incorrect device mode settings, and no codes are recognized within the field of view.
- The version of the client does not match with that of the firmware.

### Solution

- Disable the trigger mode.
- Set the device mode as the test mode.
- Go to **Help** → **About** to check the version of the client.

## 12.5 Why codes within the field of view cannot be recognized?

### Problem

Codes within the field of view cannot be recognized.

### Reason

Correct code types are not selected in the **Algorithm Settings**, or incorrect settings in **Filter Rule**.

### **Solution**

- Go to **Algorithm Settings** → **Select Code**, and add different types of codes according to actual demands.
- Go to **Data Processing** → **Filter Rule**, and adjust settings in **Filter Rule** according to actual demands.

## **12.6 Why the image quality is very poor during the live view?**

### **Reason**

- The network may be Fast Ethernet.
- Incorrect jumbo packet settings.

### **Solution**

- Confirm whether the network transmission speed is 1 Gbps and NIC is the gigabit NIC, etc.
- Set jumbo packet value as 9 KB, or 9014 bytes.

## **12.7 Why the recognized codes are incomplete?**

### **Reason**

- Number of codes exceeds the limit.
- **Numeral Filter** is enabled.
- The code length is limited.

### **Solution**

- Go to **Algorithm Settings** > **Select Code** to reset the number of codes.
- Go to **Data Processing** > **Filter Rule** to disable the **Numeral Filter** function.

Go to **Data Processing** > **Filter Rule** to edit the code length.

## **12.8 Why can only the SmartSDK be selected as the communication protocol in Communication Settings section?**

### **Reason**

The Test mode is set as the operation mode.


### **Solution**

It might because the device is under Test mode. You can go to the live view window and set the device operation mode to Normal mode.

## Chapter 13 Revision History

### Revision History

| Version No. | Document No. | Date          | Revision Details  |
|-------------|--------------|---------------|-------------------|
| V1.0.0      | UD39617B     | Sep. 25, 2024 | Original version. |



**HIKROBOT**

SHAPE OUR FUTURE INTELLIGENTLY

**Hangzhou Hikrobot Technology Co.,Ltd.**

E-mail: [global.support@hikrobotics.com](mailto:global.support@hikrobotics.com)

Website: <https://en.hikrobotics.com/>

**UD39617B**